Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Symmetric interpolatory dual wavelet frames


Author: A. V. Krivoshein
Translated by: the author
Original publication: Algebra i Analiz, tom 28 (2016), nomer 3.
Journal: St. Petersburg Math. J. 28 (2017), 323-343
MSC (2010): Primary 42C40; Secondary 65T60
DOI: https://doi.org/10.1090/spmj/1453
Published electronically: March 29, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any symmetry group $ {\mathcal H}$ and any appropriate matrix dilation (compatible with $ {\mathcal H}$), an explicit method is given for the construction of $ {\mathcal H}$-symmetric interpolatory refinable masks that obey the sum rule of an arbitrary order $ n$. Moreover, a description of all such masks is obtained. This type of mask is the starting point for the construction of symmetric wavelets and interpolatory subdivision schemes preserving symmetry properties of the initial data. For any given $ {\mathcal H}$-symmetric interpolatory refinable mask, an explicit technique is suggested for the construction of dual wavelet frames such that the corresponding wavelet masks are mutually symmetric and have vanishing moments up to the order $ n$. For an Abelian symmetry group $ {\mathcal H}$, this technique is modified so that all the resulting wavelet masks have the $ {\mathcal H}$-symmetry property.


References [Enhancements On Off] (What's this?)

  • 1. I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet theories, FIZMATLIT, Moscow, 2005; English transl., Transl. Math. Monogr., vol. 239, Amer. Math. Soc., Providence, RI, 2011. MR 2779330
  • 2. G. Andaloro, M. Cotronei, and L. Puccio, A new class of non-separable symmetric wavelets for image processing, Comm. SIMAI Congress 3 (2009), 324-336.
  • 3. P. J. Cameron, Permutation groups, London Math. Soc. Student Text, vol. 45, Cambridge Univ. Press, Camridge, 1999. MR 1721031
  • 4. A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc.  93 (1991), no. 453. MR 1079033
  • 5. O. Christensen, Frames and bases. An introductory course. Applied and numerical harmonic analysis, Birkhauser, Boston, MA, 2008. MR 2428338
  • 6. N. Dyn and D. Levin, Subdivision schemes in geometric modelling, Acta Numer. 11 (2002), 73-144. MR 2008967
  • 7. N. Dyn and M. Skopina, Decompositions of trigonometric polynomials related to multivariate subdivision schemes, Adv. Comput. Math. 38 (2013), no. 2, 321-349. MR 3019151
  • 8. B. Han, Construction of multivariate biorthogonal wavelets by CBC algorithm, Adv. Comput. Math. 13 (2000), no. 2, 131-165. MR 1777991
  • 9. -, Symmetry property and construction of wavelets with a general dilation matrix, Linear Algebra Appl. 353 (2002), 207-225. MR 1919638
  • 10. -, Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix, J. Comput. Appl. Math. 155 (2003), no. 1, 43-67. MR 1992289
  • 11. -, Computing the smoothness exponent of a symmetric multivariate refinable function, SIAM J. Matrix Anal. Appl. 24 (2003), no. 3, 693-714. MR 1972675
  • 12. -, Symmetric multivariate orthogonal refinable functions, Appl. Comput. Harmon. Anal. 17 (2004), no. 3, 277-292. MR 2097080
  • 13. -, Matrix extension with symmetry and applications to symmetric orthonormal complex M-wavelets, J. Fourier Anal. Appl. 15 (2009), no. 5, 684-705. MR 2563779
  • 14. B. Han and X. S. Zhuang, Matrix extension with symmetry and its application to symmetric orthonormal multiwavelets, SIAM J. Math. Anal. 42 (2010), no. 5, 2297-2317. MR 2729441
  • 15. B. Han, Symmetric orthogonal filters and wavelets with linear-phase moments, J. Comput. Appl. Math. 236 (2011), no. 4, 482-503. MR 2843033
  • 16. Q. T. Jiang, Biorthogonal wavelets with 6-fold axial symmetry for hexagonal data and triangle surface multiresolution processing, Int. J. Wavelets Multiresolut. Inf. Process 9 (2011), no. 5, 773-812. MR 2847402
  • 17. Q. T. Jiang, Bi-frames with 4-fold axial symmetry for quadrilateral surface multiresolution processing, J. Comput. Appl. Math. 234 (2010), no. 12, 3303-3325. MR 2665387
  • 18. S. Karakaz'yan, M. A. Skopina, and M. Tchobanou, Symmetric multivariate wavelets, Int. J. Wavelets Multiresolut. Inf. Process. 7 (2009), no. 3, 313-340. MR 2572629
  • 19. K. Koch, Multivariate symmetric interpolating scaling vectors with duals, J. Fourier Anal. Appl. 15 (2009), no. 1, 1-30. MR 2491024
  • 20. A. Krivoshein, On construction of multivariate symmetric MRA-based wavelets, Appl. Comput. Harmon. Anal. 36 (2014), no. 2, 215-238. MR 3153654
  • 21. A. Krivoshein and M. Skopina, Approximation by frame-like wavelet systems, Appl. Comput. Harmon. Anal. 31 (2011), no. 3, 410-428. MR 2836031
  • 22. A. Petukhov, Construction of symmetric orthogonal bases of wavelets and tight wavelet frames with integer dilation factor, Appl. Comput. Harmon. Anal. 17 (2004), no. 2, 198-210. MR 2082158
  • 23. U. Reif and J. Peters, Subdivision surfaces, Geometry Comput., vol. 3, Springer-Verlag, Berlin, 2008. MR 2415757
  • 24. A. Ron and Z. Shen, Affine systems in $ {L_2(R^d)}$: the analysis of the analysis operator, J. Func. Anal. 148 (1997), no. 2, 408-447. MR 1469348
  • 25. -, Affine systems in $ L_2(R^d)$. II. Dual systems, J. Fourier Anal. Appl. 3 (1997), no. 5, 617-637. MR 1491938
  • 26. M. A. Skopina, On construction of multivariate wavelets with vanishing moments, Appl. Comput. Harmon. Anal. 20 (2006), no. 3, 375-390. MR 2224904
  • 27. -, On construction of multivariate wavelet frames, Appl. Comput. Harmon. Anal. 27 (2009), no. 1, 55-72. MR 2526887
  • 28. J. Warren and H. Weimer, Subdivision methods for geometric design: a constructive approach, Morgan Kaufman, Burlington, Mass., 2001.
  • 29. A. Weinmann, Subdivision schemes with general dilation in the geometric and nonlinear setting, J. Approx. Theory 164 (2012), no. 1, 105-137. MR 2855772
  • 30. X. S. Zhuang, Matrix extension with symmetry and construction of biorthogonal multiwavelets with any integer dilation, Appl. Comput. Harmon. Anal. 33 (2012), no. 2, 159-181. MR 2927456

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 42C40, 65T60

Retrieve articles in all journals with MSC (2010): 42C40, 65T60


Additional Information

A. V. Krivoshein
Affiliation: St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
Email: a.krivoshein@spbu.ru, KrivosheinAV@gmail.com

DOI: https://doi.org/10.1090/spmj/1453
Keywords: Dual wavelet frames, matrix extension principle, interpolatory mask, symmetry group, subdivision schemes
Received by editor(s): September 10, 2015
Published electronically: March 29, 2017
Additional Notes: Supported by Saint-Petersburg State University (research grant no. 9.38.198.2015) and by RFBR (project no. 15-01-05796 a).
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society