Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

A new look at the decomposition of unipotents and the normal structure of Chevalley groups


Author: A. Stepanov
Translated by: the author
Original publication: Algebra i Analiz, tom 28 (2016), nomer 3.
Journal: St. Petersburg Math. J. 28 (2017), 411-419
MSC (2010): Primary 20G35
DOI: https://doi.org/10.1090/spmj/1456
Published electronically: March 29, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The paper continues a series of publications on the decomposition of unipotents in a Chevalley group $ \mathrm {G} (\Phi ,R)$ over a commutative ring $ R$ with a reduced irreducible root system $ \Phi $. Fix $ h\in \mathrm {G} (\Phi ,R)$. An element $ a\in \mathrm {G} (\Phi ,R)$ is said to be ``good'' if it belongs to the unipotent radical of a parabolic subgroup and the conjugate to $ a$ by $ h$ lies in another parabolic subgroup (all parabolic subgroups are assumed to contain the same split maximal torus). The ``decomposition of unipotents'' method is a representation of an elementary root unipotent element as a product of ``good'' elements. Decomposition of unipotents implies a simple proof of normality for the elementary subgroup and the standardness for the normal structure of $ \mathrm {G} (\Phi ,R)$. However, such a decomposition is available not for all root systems. In the paper, it is shown that to prove the standardness of the normal structure it suffices to find one ``good'' element for the generic element of the group scheme $ \mathrm {G}(\Phi ,{\hbox to 1.5ex{\hrulefill }})$. Also, some ``good'' elements are constructed. The question as to whether and when good elements span the elementary subgroup will be considered in a subsequent article of the series.


References [Enhancements On Off] (What's this?)

  • 1. Z. I. Borevich and N. A. Vavilov, Arrangement of subgroups in the general linear group over a commutative ring, Tr. Mat. Inst. Steklov. 165 (1984), 24-42; English transl., Proc. Steklov Inst. Math. 165 (1985), 27-46. MR 752930
  • 2. N. A. Vavilov and A. K. Stavrova, Basic reductions in the problem of the description of normal subgroups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 349 (2007), 30-52; English transl., J. Math. Sci. (N.Y.) 151 (2008), no. 3, 2949-2960. MR 2742852
  • 3. N. A. Vavilov and A. V. Stepanov, Overgroups of semisimple groups, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser. 2008, no. 3, 51-95. (Russian) MR 2473730
  • 4. L. N. Vaserštein, On the stabilization of the general linear group over a ring, Mat. Sb. 79 (1969), no. 3, 405--424; English trannsl., Math. USSR-Sb. 8 (1969), no. 3, 383-400. MR 0267009
  • 5. Z. Golubčik, The full linear group over an associative ring, Uspekhi Mat. Nauk 28 (1973), no. 3, 179-180. (Russian) MR 0396783
  • 6. E. Abe, Normal subgroups of Chevalley groups over commutative rings, Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 1-17. MR 991973
  • 7. E. Abe and K. Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. (2) 28 (1976), no. 2, 185-198. MR 0439947
  • 8. A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55-150. MR 0207712
  • 9. M. Demazure and A. Grothendieck, Schémas en groupes, Lecture Notes in Math., vol. 151-153, Springer-Verlag, Berlin-Heidelberg-New York, 1970. MR 0274460, MR 0274459, MR 0274458
  • 10. J. C. Jantzen, Representations of algebraic groups, 2nd ed., Math. Surveys Monogr., vol. 107, Amer. Math. Soc., Providence, RI, 2003. MR 2015057
  • 11. M. R. Stein, Generators, relations, and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965-1004. MR 0322073
  • 12. A. Stepanov, Elementary calculus in Chevalley groups over rings, J. Prime Res. Math. 9 (2013), 79-95. MR 3186522
  • 13. -, Structure of Chevalley groups over rings via universal localization, J. Algebra 450 (2016), 522-548. MR 3449702
  • 14. A. V. Stepanov and N. A. Vavilov, Decomposition of transvections: Theme with variations, K-Theory 19 (2000), no. 2, 109-153. MR 1740757
  • 15. L. N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. (2) 38 (1986), 219-230. MR 843808

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 20G35

Retrieve articles in all journals with MSC (2010): 20G35


Additional Information

A. Stepanov
Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University; St. Petersburg State Electrotechnical University “LETI”
Email: stepanov239@gmail.com

DOI: https://doi.org/10.1090/spmj/1456
Keywords: Chevalley groups, parabolic subgroup, unipotent element, generic element, universal localization, normal structure
Received by editor(s): December 15, 2015
Published electronically: March 29, 2017
Additional Notes: Supported by RSF, (grant no. 14-11-00297).
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society