Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Symmetrization of bounded remainder sets


Author: V. G. Zhuravlev
Translated by: A. Luzgarev
Original publication: Algebra i Analiz, tom 28 (2016), nomer 4.
Journal: St. Petersburg Math. J. 28 (2017), 491-506
MSC (2010): Primary 52C17
DOI: https://doi.org/10.1090/spmj/1461
Published electronically: May 4, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new method for constructing exchanged toric developments is suggested. This method is based on symmetrization of embedded or induced toric developments and is the main tool for obtaining bounded remainder sets in arbitrary dimension.


References [Enhancements On Off] (What's this?)

  • 1. E. Altman, B. Gaujal, and A. Hordijk, Balanced sequences and optimal routing, J. ACM 47 (2000), no. 4, 752-775. MR 1866176
  • 2. V. Baladi, D. Rockmore, N. Tongring, and C. Tresser, Renormalization on the $ n$-dimensional torus, Nonlinearity 5 (1992), no. 2, 1111-1136. MR 1187740
  • 3. S. Ferenczi, Bounded remainder sets, Acta Arith. 61 (1992), no. 4, 319-326. MR 1168091
  • 4. N. P. Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., vol. 1794, Springer-Verlag, Berlin, 2002. MR 1970385
  • 5. E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod. Eins, Abh. Math. Sem. Univ. Hamburg 1 (1922), no. 1, 54-76. MR 3069388
  • 6. A. Heinis, Languages under substitutions and balanced words, J. Théor. Nombres Bordeaux 16 (2004), no. 1, 151-172. MR 2145577
  • 7. D. Knuth, Efficient balanced codes, IEEE Trans. Inform. Theory 32 (1986), no. 1, 51-53. MR 831559
  • 8. P. Liardet, Regularities of distribution, Compos. Math. 61 (1987), no. 3, 267-293. MR 883484
  • 9. M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, Amer J. Math. 62 (1940), 1-42. MR 0000745
  • 10. G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France 110 (1982), no. 2, 147-178. MR 667748
  • 11. G. Rauzy, Ensembles à restes bornés, Sem. Number Theory, 1983-1984 (Talence, 1983/1984), Exp. No. 24, Univ. Bordeaux I, Talence, 1984. MR 784071
  • 12. A. V. Shutov, A. V. Maleev, and V. G. Zhuravlev, Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry, Acta Crystallogr. A66 (2010), no. 3, 427-437. MR 2663576
  • 13. R. Szüsz, Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheitsquadrats, Acta Math. Acad. Sci. Hungar. 5 (1954), 35-39. MR 0064086
  • 14. L. Vuillon, Balanced words, Bull. Belg. Math. Soc. Simon Stevin 10 (2003), 787-805. MR 2073026
  • 15. H. Weyl, Über die Gleichverteilung von Zahlen $ \bmod $ Eins, Math. Ann. 77 (1916), no. 3, 313-352. MR 1511862
  • 16. G. F. Voronoi, Collected words in three volumes. Vol. 2, Izdat. Akad. Nauk Ukr. SSR, Kiev, 1952. (Russian) MR 0062686
  • 17. V. G. Zhuravlev, Rauzy tilings and bounded remainder sets on a torus, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 322 (2005), 83-106; English transl., J. Math. Sci. (N.Y.) 137 (2006), no. 2, 4658-4672. MR 2138453 (2006b:11094)
  • 18. -, One-dimensional Fibonacci tilings, Izv. Ross. Akad. Nauk Ser. Mat. 71 (2007), no. 2, 89-122; English transl., Izv. Math. 71 (2007), no. 2, 307-340. MR 2316983
  • 19. -, One-dimensional Fibonacci quasilattices and their applications to Diophantine equations and the Euclidean algorithm, Algebra i Analiz 19 (2007), no. 3, 151-182; English transl., St. Petersburg Math. J. 19 (2008), no. 3, 431-434. MR 2340709
  • 20. -, The Pell equation over the Fibonacci $ \circ $-ring, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 350 (2007), 139-159; English transl., J. Math. Sci. (N. Y.) 150 (2008), no. 3, 2084-2095. MR 2722973
  • 21. -, Hyperbolas over two-dimensional Fibonacci quasilattices, Fundam. Prikl. Mat. 16 (2010), no. 6, 45-62; English transl., J. Math. Sci. (N. Y.) 182 (2012), no. 4, 472-483. MR 2825516
  • 22. -, A multidimensional Hecke theorem on the distribution of fractional parts, Algebra i Analiz 24 (2012), no. 1, 95-130; English transl., St. Petersburg Math. J. 24 (2013), no. 1, 71-97. MR 3013295
  • 23. -, Exchanged toric developments and bounded remainder sets. Zap. Nuchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 392 (2011), 95-145; English transl., J. Math. Sci. (N. Y.) 184 (2012), no. 6, 716-745. MR 2870222
  • 24. -, Bounded remainder polyhedra, Sovrem. Probl. Mat., vyp. 16, MIAN, Moscow, 2012, pp. 82-102; English transl., Proc. Steklov Inst. Math. 280 (2013), suppl. 2, 71-90. MR 3447582
  • 25. -, Moduli of toric tilings into bounded remainder sets and balanced words, Algebra i Analiz 24 (2012), no. 4, 97-136; English transl., St. Petersburg Math. J. 24 (2013), no. 4, 601-629. MR 3088009
  • 26. -, Bounded remainder sets with respect to exchanges of a torus, Algebra i Analiz 27 (2015), no. 2, 96-131; English transl., St. Peterburg Math. J. 27 (2016), no. 2, 245-271. MR 3444463
  • 27. -, Multi-colour dynamical tilings of tori into-bounded remainder sets, Izv. Ross. Akad. Nauk Ser. Mat. 79 (2015), no. 5, 65-102; English transl., Izv. Math. 79 (20150, no. 5, 919-954. MR 3438456
  • 28. A. I. Pavlov, Meromorphic continuation of Dirichlet series connected with the distribution of numbers modulo, Tr. Mat. Inst. Steklova 218 (1997), 343-353; English transl., Proc. Steklov Inst. Math. 218 (1997), no. 3, 340-351. MR 1642413
  • 29. C. Reid, Hilbert, Springer-Verlag, New York, 1970. MR 0270884
  • 30. E. S. Fedorov, Elements of the study of figures, Izdat. Akad. Nauk SSSR, Moscow, 1953. (Russian) MR 0062061 (15:0238g)

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 52C17

Retrieve articles in all journals with MSC (2010): 52C17


Additional Information

V. G. Zhuravlev
Affiliation: Vladimir State University, pr. Stroiteley 11, Vladimir 600024, Russia
Email: vzhuravlev@mail.ru

DOI: https://doi.org/10.1090/spmj/1461
Keywords: Bounded remainder sets, toric developments, symmetrization
Received by editor(s): April 27, 2015
Published electronically: May 4, 2017
Additional Notes: Supported by RSF (project no. 14-11-00433).
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society