Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

 
 

 

Induced bounded remainder sets


Author: V. G. Zhuravlev
Translated by: A. Luzgarev
Original publication: Algebra i Analiz, tom 28 (2016), nomer 5.
Journal: St. Petersburg Math. J. 28 (2017), 671-688
MSC (2010): Primary 52C20; Secondary 51M20
DOI: https://doi.org/10.1090/spmj/1466
Published electronically: July 25, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The induced two-dimensional Rauzy tilings are generalized to tiling of the tori $ \mathbb{T}^D= \mathbb{R}^D/ \mathbb{Z}^D$ of arbitrary dimension $ D$. For that, a technique of embedding $ T\stackrel {\operatorname {em}}{\hookrightarrow } \mathbb{T}^D$ of toric developments $ T$ into the torus $ \mathbb{T}^D_L = \mathbb{R}^D/ L$ for some lattice $ L$ is used. A feature of the developments $ T$ is that for a given shift $ S: \mathbb{T}^D \longrightarrow \mathbb{T}^D$ of the torus, its restriction $ S\vert _T$ to the subset $ T \subset \mathbb{T}^D$, i.e., the first recurrence map, or the Poincaré map, is equivalent to an exchange transformation of the tiles $ T_k$ that form a tiling of the development $ T=T_0\sqcup T_1\sqcup \dots \sqcup T_D$. In the case under consideration, the induced map $ S\vert _T$ is a translation of the torus $ \mathbb{T}^D_L$.

It is proved that every $ T_k$ is a bounded remainder set: the deviations $ \delta _{T_k}(i,x_{0})$ in the formula $ r_{T_k}(i,x_{0})= a_{T_k} i + \delta _{T_k}(i,x_{0})$ are bounded, where $ r_{T}(i,x_{0})$ is the number of occurrences of the points $ S^{0}(x_{0}), S^{1}(x_{0}),\dots , S^{i-1}(x_{0})$ from the $ S$-orbit in the set $ T_k$, $ x_0$ is an arbitrary starting point on the torus $ \mathbb{T}^D$, and the coefficient $ a_{T_k}$ equals the volume of $ T_k$. Explicit estimates are obtained for these deviations $ \delta _{T_k}(i,x_{0})$. Earlier, the relationship between the maps $ S\vert _T$ and bounded remainder sets was noticed by Rauzy and Ferenczi.


References [Enhancements On Off] (What's this?)

  • [1] A. A. Abrosimova, Average values for deviation distribution of points on the torus, Nauch. Vedomosti Bel. GU Ser. Mat. Fiz. 26 (2012), no. 5, 5-11. (Russian)
  • [2] G. F. Voronoi, Collected works. Vol. II, Izdat. Akad. Nauk Ukrain. SSR, Kiev, 1952. (Russian) MR 0062686 (16:2d)
  • [3] V. G. Zhuravlev, One-dimensional Fibonacci tilings, Izv. Ross. Akad. Nauk Ser. Mat. 71 (2007), no. 2, 89-122; English transl., Izv. Math. 71 (2007), no. 2, 307-340. MR 2316983
  • [4] -, Rauzy tilings and bounded remainder sets on a torus, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 322 (2005), 83-106; English transl., J. Math. Sci. (N. Y.) 137 (2006), no. 2, 4658-4672. MR 2138453
  • [5] -, A multidimensional Hecke theorem on the distribution of fractional parts, Algebra i Analiz 24 (2012), no. 1, 95-130; English transl., St. Petersburg Math. J. 24 (2013), no. 1, 71-97. MR 3013295
  • [6] -, Exchanged toric developments and bounded remainder sets, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 392 (2011), 95-145; English transl., J. Math. Sci. (N. Y.) 184 (2012), no. 6, 716-745. MR 2870222
  • [7] -, Bounded remainder polyhedra, Sovrem. Probl. Mat., vyp. 16, MIAN, Moscow, 2012, pp. 82-102; English ransl., Proc. Steklov Inst. Math. 280 (2013), suppl. 2, 71-90. MR 3447582
  • [8] A. V. Shutov, On a family of two-dimensional bounded remainder sets, Chebyshevskii Sb. 12 (2011), no. 4, 264-271. (Russian) MR 3075060
  • [9] E. S. Fedorov, Elements of the study of figures, Izdat. Akad. Nauk SSSR, Moscow, 1953. (Russian) MR 0062061
  • [10] S. Ferenczi, Bounded remaider sets, Acta Arith. 61 (1992), no. 4, 319-326. MR 1168091
  • [11] E. Hecke, Über analytische Funktionen und die Verteilung von Zahlen mod. Eins, Abh. Math. Sem. Hamburg. Univ. 1 (1921), no. 1, 54-76. MR 3069388
  • [12] G. Rauzy, Ensembles à restes bornés, Sem. Number Theory, 1983-1984 (Talence, 1983/84), Exp. No. 24, Univ. Bordeaux I, Talence, 1984. MR 784071
  • [13] H. Weyl, Über die Gleichverteilung von Zahlen $ \mathrm {mod}$ Eins, Math. Ann. 77 (1916), no. 3, 313-352. MR 1511862

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 52C20, 51M20

Retrieve articles in all journals with MSC (2010): 52C20, 51M20


Additional Information

V. G. Zhuravlev
Affiliation: Vladimir State University, pr. Stroiteley 11, 600024 Vladimir, Russia
Email: vzhuravlev@mail.ru

DOI: https://doi.org/10.1090/spmj/1466
Keywords: Poincar\'e map, bounded remainder sets
Received by editor(s): November 1, 2014
Published electronically: July 25, 2017
Additional Notes: Financially supported by RSF, project no. 14-01-00360
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society