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AFFINE HEMISPHERES OF ELLIPTIC TYPE
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Dedicated to Yuri Burago
at the occasion of his 80th birthday

Abstract. We find that for any n-dimensional, compact, convex set K ⊆ Rn+1

there is an affinely-spherical hypersurface M ⊆ Rn+1 with center in the relative
interior of K such that the disjoint union M ∪ K is the boundary of an (n + 1)-
dimensional, compact, convex set. This so-called affine hemisphere M is uniquely

determined by K up to affine transformations, it is of elliptic type, is associated with
K in an affinely-invariant manner, and it is centered at the Santaló point of K.

§1. Introduction

Let M ⊆ Rn+1 be a smooth, connected hypersurface which is locally strongly-convex,
i.e., the second fundamental form is a definite symmetric bilinear form at any point
y ∈ M . There are several ways to define the affine normal line �M (y) at a point y ∈ M .
One possibility is to define �M (y) via the following procedure:

(i) Let H = TyM be the tangent space to M at the point y ∈ M , viewed as a linear
subspace of codimension one in Rn+1. Select a vector v �∈ H pointing to the
convex side of M at the point y ∈ M , and denote Mt = M ∩ (H + y + tv) for
t > 0. Here, H + y + tv = {x+ y + tv; x ∈ H}.

(ii) For a sufficiently small t > 0, the section Mt encloses an n-dimensional convex
body Ωt ⊆ H+y+ tv. The barycenters bt = bar(Ωt) depend smoothly on t. The
affine normal line �M (y) ⊆ Rn+1 is defined to be the line passing through y in
the direction of the nonzero vector d

dtbt
∣∣
t=0

.

We say that M is affinely-spherical with center at a point p ∈ Rn+1 if all of the
affine normal lines of M meet at p. In the case where all of the affine normal lines are
parallel, we say that M is affinely-spherical with center at infinity. An affine sphere is
an affinely-spherical hypersurface which is complete, i.e., it is a closed subset of Rn+1.
This definition is clearly affinely-invariant, hence the term “affine sphere”. In §5 below
we explain that M is affinely-spherical with center at the origin if and only if the cone
measure on M is mapped to a measure proportional to the cone measure on the polar
hypersurface M∗ via the polarity map.

Affine spheres were introduced by the Romanian geometer Tzitzéica [24, 25]. All
convex quadratic hypersurfaces in Rn+1 are affine spheres, as well as the hypersurface

M =

{
(x1, . . . , xn) ∈ Rn; ∀i, xi > 0,

n∏
i=1

xi = 1

}
,
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Figure 1. Half of an ellipse, which is an affine one-dimensional hemi-
sphere in R2.

found by Tzitzéica [24, 25] and Calabi [10]. See Loftin [18] for a survey on affine spheres.
At any point y ∈ M , the punctured line �M (y) \ {y} is naturally divided into two rays:
one pointing to the convex side of M and the other to the concave side. These two
rays are referred to as the convex side and the concave side of �M (y), respectively. An
affinely-spherical hypersurface M is called elliptic if its center lies on the convex side of
all of the affine normal lines. It is hyperbolic if its center lies on the concave side of all
of the affine normal lines. There are also parabolic affine spheres, whose affine normal
lines are all parallel.

Ellipsoids in Rn+1 are elliptic affine spheres, while elliptic paraboloids are parabolic
affine spheres. There are no other examples of complete affine spheres of elliptic or
parabolic type. This nontrivial theorem is the culmination of the works of Blaschke [4],
Calabi [9], Pogorelov [21], and Trudinger and Wang [23].

While affine spheres of elliptic or parabolic type are quite rare, there are many hyper-
bolic affine spheres in Rn+1. From the work of Calabi [10] and Cheng-Yau [11] we learn
that for any nonempty, open, convex cone C ⊆ Rn+1 that does not contain a full line,
there exists a hyperbolic affine sphere which is asymptotic to the cone. This hyperbolic
affine sphere is determined by the cone C up to homothety, and all hyperbolic affine
spheres in Rn+1 arise this way. Why are there so few elliptic affine spheres, compared
to the abundance of hyperbolic affine spheres? Perhaps completeness is too strong a
requirement in the elliptic case. We propose the following:

Definition 1.1. Let M ⊆ Rn+1 be a smooth, connected, locally strongly-convex hyper-
surface. We say that M is an “affine hemisphere” if

1. There exist compact, convex sets K, K̃ ⊆ Rn+1, with dim(K) = n and dim(K̃) =
n+ 1, such that M does not intersect the affine hyperplane spanned by K and

K ∪M = ∂K̃.

2. The hypersurface M is affinely-spherical with center in the relative interior of K.

We say that K is the “anchor” of the affine hemisphere M .

In Definition 1.1, the dimension dim(K) is the maximal number N such that K con-
tains N + 1 affinely-independent vectors. Note that when M ⊆ Rn+1 is an affine hemi-
sphere, its anchor K is the compact, convex set enclosed by M \ M , where M is the
closure of M . In particular, K = Conv(M \M) where Conv denotes convex hull. It is
clear that an affine hemisphere is always of elliptic type.

Theorem 1.2. Let K ⊆ Rn+1 be an n-dimensional, compact, convex set. Then there
exists an affine hemisphere M ⊆ Rn+1 with anchor K, uniquely determined up to affine
transformations. The affine hemisphere M is centered at the Santaló point of K.

Thus, with any n-dimensional, compact, convex set K ⊆ Rn+1 we associate an

(n+ 1)-dimensional, compact, convex set K̃ ⊆ Rn+1 whose boundary consists of two
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parts: the convex set K itself is a facet, and the rest of the boundary is an affine hemi-
sphere M centered at the Santaló point of K. We refer the reader to Loftin [18] and
to Nomizu and Sasaki [20] for information about the rich geometric structure associated
with affinely-spherical hypersurfaces. Let us just observe here that by [20, Theorem 6.5],
any affine function in Rn+1 that vanishes on K is an eigenfunction of the affine-metric
Laplacian of M with Dirichlet boundary conditions, corresponding to the first eigenvalue.

The proof of Theorem 1.2 is basically a variant of the moment measure construction
by Cordero-Erausquin and the author [12] which is in turn influenced by Berman and
Berndtsson [3] and is also analogous to the classical Minkowski problem. Let us now
present a few questions about affine hemispheres.

1. Other than half-ellipsoids, we are not aware of any affine hemisphere that may
be described by a simple formula. Is there a closed form for the affine hemisphere
associated with the n-dimensional simplex or the n-dimensional cube? For mo-
ment measures, the solutions in the case of the simplex and the cube are given
by explicit formulas, see [12].

2. Calabi [10] found a composition rule for hyperbolic affine spheres, allowing one to
construct a hyperbolic affine sphere of dimension n+m+1 from two hyperbolic
affine spheres of dimensions n and m. Is there an analogous construction for
affine hemispheres?

3. An intriguing question is whether an affine hemisphere M can be extended be-

yond its anchor K, to an affinely-spherical hypersurface M̃ � M . When the
anchor K is an ellipsoid, the affine hemisphere M with anchor K is half an el-
lipsoid, and may clearly be extended to the surface of a full ellipsoid. On the
other hand, if K is a polytope, then the affine hemisphere M cannot be smoothly
extended beyond the vertices of K.

4. Finally, is there a theory similar to that of affine hemispheres that is related to
parabolic affinely-spherical hypersurfaces? See Ferrer, Mart́ınez and Milán [14],
Milán [19] and Remark 5.12 below for partial results in this direction.

Throughout this paper, by smooth we always mean C∞-smooth. We write | · | for the
usual Euclidean norm in Rn, and Sn = {x ∈ Rn+1 ; |x| = 1} is the Euclidean unit sphere
centered at the origin. The standard scalar product of x, y ∈ Rn is denoted by 〈x, y〉. We
write log for the natural logarithm. For a Borel measure μ in Rn we denote by Supp(μ) the
support of μ, which is the intersection of all closed sets of full μ-measure. A hypersurface
in Rn+1 is an n-dimensional submanifold of Rn+1. A submanifold M ⊆ Rn+1 encloses a
convex set K ⊆ Rn+1 if M is the boundary of K relative to the affine subspace spanned
by K.

§2. A variational problem

In this section we analyze a variational problem related to affine hemispheres. Similar
variational problems were considered by Berman and Berndtsson [3] and by Cordero-
Erausquin and the author [12]. For a function ψ : Rn → R ∪ {+∞} denote

Dom(ψ) = {x ∈ Rn; ψ(x) < +∞} .
The Legendre transform of ψ is the convex function

ψ∗(y) = sup
x∈Dom(ψ)

[〈x, y〉 − ψ(x)] (y ∈ Rn),

where sup∅ = −∞. The function ψ∗ is always convex and lower semicontinuous. A con-
vex function ψ : Rn → R∪{+∞} is proper if it is lower semicontinuous with Dom(ψ) �= ∅.
When ψ is convex and proper, the Legendre transform ψ∗ is again convex and proper,
and ψ∗∗ = ψ. We will frequently use the formula ψ∗(0) = − inf ψ, as well as the relation
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(λψ)∗(x) = λψ∗(x/λ), which is valid for any x ∈ Rn and λ > 0. It is also well known
that for any v ∈ Rn, denoting ψ1(x) = ψ(x) + 〈x, v〉, we have

(1) ψ∗
1(y) = ψ∗(y − v) (y ∈ Rn).

See Rockafellar [26] for a thorough discussion of the Legendre transform. For p > 0 and
a function ψ : Rn → R ∪ {+∞} with ψ(0) < 0 we define

(2) Ip(ψ) =
(∫

Rn

dx

(ψ∗(x))n+p

)−1/p

∈ [0,+∞].

Two remarks are in order. First, note that inf ψ∗ ≥ −ψ(0) > 0, and that the integral
in (2) is a well-defined element of [0,+∞]. Second, for the purpose of definition (2) let
us agree that 0−α = +∞ and (+∞)−α = 0 for α > 0. The functional Ip is closely
related to the Borell–Brascamp–Lieb inequality [5, 6]. This inequality, which is a variant
of Brunn–Minkowski, states the following: For any 0 < λ < 1 and three convex functions
ϕλ, ϕ0, ϕ1 : R

n → (0,+∞] such that

(3) ϕλ ((1− λ)x+ λy) ≤ (1− λ)ϕ0(x) + λϕ1(y) (x, y ∈ Rn),

we have

(4)

(∫
Rn

dx

ϕλ(x)n+p

)−1/p

≤ (1− λ)

(∫
Rn

dx

ϕ0(x)n+p

)−1/p

+ λ

(∫
Rn

dx

ϕ1(x)n+p

)−1/p

.

The Borell–Brascamp–Lieb inequality, sometimes called the dimensional Prékopa in-
equality, implies the convexity of Ip as is stated in the following lemma.

Lemma 2.1. Let p, λ > 0, and let ψ, ψ0, ψ1 : R
n → R ∪ {+∞} be functions that are

negative at zero. Denote ϕ = ψ∗, ϕ0 = ψ∗
0 and ϕ1 = ψ∗

1 . Then the following statements
hold.

(i) Ip(λψ) = λIp(ψ).
(ii) Ip(ψ0 + ψ1) ≤ Ip(ψ0) + Ip(ψ1).
(iii) Assume that Dom(ϕ0) = Dom(ϕ1) = Rn. Then equality in (ii) occurs if and only

if there exists x0 ∈ Rn and λ > 0 such that

ϕ1(x) = λϕ0(x0 + x/λ) for all x ∈ Rn.

Proof. By using the formula (λψ)∗(x) = λϕ(x/λ), which is valid for any x ∈ Rn, we
obtain

Ip(λψ) =
(∫

Rn

dx

(λϕ(x/λ))n+p

)−1/p

= λ
n+p
p · λ−n

p

(∫
Rn

dx

ϕ(x)n+p

)−1/p

= λIp(ψ).

Thus (i) is proven. Next, denote ϕ1/2 =
[
(ψ0+ψ1)/2

]∗
. Then ϕ0, ϕ1, ϕ1/2 : R

n → (0,+∞]
are convex functions, and for any x, y ∈ Rn,

ϕ1/2

(
x+ y

2

)
= sup

z∈Dom(ψ0)∩Dom(ψ1)

[〈
x+ y

2
, z

〉
− ψ0(z) + ψ1(z)

2

]

≤ 1

2

{
sup

z∈Dom(ψ0)

[〈x, z〉 − ψ0(z)] + sup
z∈Dom(ψ1)

[〈y, z〉 − ψ1(z)]

}
=

ϕ0(x) + ϕ1(y)

2
.

Hence condition (3) is satisfied, with λ = 1/2. The case λ = 1/2 of the Borell–Brascamp–
Lieb inequality (4) implies that

Ip
(
ψ0 + ψ1

2

)
≤ Ip(ψ0) + Ip(ψ1)

2
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and (ii) now follows from (i). According to Dubuc [13], equality occurs in (4), with
ϕ0, ϕ1 : R

n → (0,+∞) being convex functions, if and only if there exist λ > 0 and
x0 ∈ Rn such that ϕ1(x) = λϕ0(x0 + x/λ) for all x ∈ Rn. This proves (iii). �

The next lemma describes a lower semicontinuity property of the functional Ip.

Lemma 2.2. Let p > 0 and let K ⊆ Rn be a convex, open set containing the origin. Let
ψ : Rn → R ∪ {+∞} be a convex function with ψ(0) < 0 such that K ⊆ Dom(ψ) ⊆ K.
Assume that for any � ≥ 1 we are given a function ψ� : R

n → R ∪ {+∞} with ψ�(0) < 0
and such that ψ� −→ ψ pointwise in the set K as � → ∞. Then,

Ip(ψ) ≤ lim inf
�→∞

Ip(ψ�).

Proof. The convex function ψ is finite and hence continuous in the convex, open set K.
Since 0 ∈ K and ψ(0) < 0, we may find ε > 0 and linearly independent vectors
v1, . . . , vn ∈ K such that

ψ(±vi) < −ε for i = 1, . . . , n.

By the pointwise convergence in K, there exists �0 such that ψ�(±vi) < −ε for all
� ≥ �0 and i = 1, . . . , n. The convex hull of the 2n points {±vi; i = 1, . . . , n} contains
a Euclidean ball of radius δ > 0 centered at the origin. Consequently, for � ≥ �0 and
x ∈ Rn,

(5) ψ∗
� (x) = sup

y∈Dom(ψ�)

[〈x, y〉 − ψ�(x)] ≥ sup
i=1,...,n

[|〈x, vi〉|+ ε] ≥ ε+ δ|x|.

Next, we claim that for any x0 ∈ Rn,

(6) ψ∗(x0) ≤ lim inf
�→∞

ψ∗
� (x0).

Indeed, since ψ is convex, its restriction to any line segment in the convex set Dom(ψ)
is upper semicontinuous (see, e.g., [15]). From the inclusion Dom(ψ) ⊆ K we thus learn
that

ψ∗(x0) = sup
y∈Dom(ψ)

[〈x0, y〉 − ψ(y)] = sup
y∈K

[〈x0, y〉 − ψ(y)] .

Hence, for any ε > 0 there exists y0 ∈ K such that ψ∗(x0) ≤ ε+ 〈x0, y0〉−ψ(y0). By the
pointwise convergence in K, for a sufficiently large � we observe that ψ�(y0) ≤ ψ(y0)+ ε.
Therefore, for a sufficiently large �,

ψ∗
� (x0) ≥ 〈x0, y0〉 − ψ�(y0) ≥ −ε+ 〈x0, y0〉 − ψ(y0) ≥ −2ε+ ψ∗(x0)

and (6) is proven. The function (ε+ δ|x|)−(n+p) is integrable in Rn. Thanks to (5) and
(6) we may use the dominated convergence theorem, and conclude that∫

Rn

dx

(ψ∗(x))n+p ≥
∫
Rn

[
lim
�→∞

sup
k≥�

1

(ψ∗
k(x))

n+p

]
dx = lim

�→∞

∫
Rn

[
sup
k≥�

1

(ψ∗
k(x))

n+p

]
dx

= lim sup
�→∞

∫
Rn

[
sup
k≥�

1

(ψ∗
k(x))

n+p

]
dx ≥ lim sup

�→∞

∫
Rn

dx

(ψ∗
� (x))

n+p . �

The next theorem is our main result in this section. It is essentially a theorem about
the Legendre transform of the functional I2

p , viewed as a convex functional on an infinite-
dimensional cone.
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Theorem 2.3. Let p > 0 and let μ be a Borel probability measure on Rn with∫
Rn

|x| dμ(x) < +∞

such that the barycenter of μ lies at the origin. Assume that the origin belongs to the
interior of Conv(Supp(μ)). Then there exists a μ-integrable, proper, convex function
ψ : Rn → R ∪ {+∞} with ψ(0) < 0 such that

(7)

∫
Rn

ψ dμ+

(∫
Rn

dx

(ψ∗(x))n+p

)−2/p

≤
∫
Rn

ψ1 dμ+

(∫
Rn

dx

(ψ∗
1(x))

n+p

)−2/p

for any μ-integrable, proper, convex function ψ1 : R
n → R ∪ {+∞} with ψ1(0) < 0.

Moreover, the expression on the left-hand side of (7) is a finite, negative number, and
ψ(x) = +∞ for any x ∈ Rn \K where K is the interior of Conv(Supp(μ)).

Note that the origin belongs to the interior of Conv(Supp(μ)) if and only if Supp(μ)
spans Rn. The remainder of this section is dedicated to the proof of Theorem 2.3. Let
us fix a number p > 0 and a Borel probability measure μ satisfying the requirements
of Theorem 2.3. For a μ-integrable, proper convex function ψ : Rn → R ∪ {+∞} with
ψ(0) < 0 we denote

Iμ,p(ψ) =
∫
Rn

ψ dμ+ I2
p(ψ) =

∫
Rn

ψ dμ+

(∫
Rn

dx

(ψ∗(x))n+p

)−2/p

.

Since the barycenter of μ is at the origin, we learn from (1) that Iμ,p(ψ) = Iμ,p(ψ1)
whenever ψ1(x) = ψ(x) + 〈x, v〉 for some v ∈ Rn. The first step in the proof of Theorem
2.3 is the following proposition.

Proposition 2.4. Let p > 0 and let μ be as in Theorem 2.3. Then,

inf
ψ

Iμ,p(ψ) > −∞

where the infimum is taken over all μ-integrable, proper convex functions ψ : Rn → R ∪
{+∞} with ψ(0) < 0.

The proof of Proposition 2.4 relies on several lemmas.

Lemma 2.5. There exist c1, c2 > 0, depending on μ, with the following property: for
any θ ∈ Sn−1, ∫

Rn

〈x, θ〉1{〈x,θ〉>c1} dμ(x) ≥ c2,

where 1{〈x,θ〉>c1} equals one when 〈x, θ〉 > c1 and it vanishes elsewhere.

Proof. The origin belongs to the interior of Conv(Supp(μ)). Therefore, for any θ ∈ Sn−1,

(8)

∫
Rn

〈x, θ〉1{〈x,θ〉>0} dμ(x) > 0.

For t > 0 consider the nonnegative function

ft(θ) =

∫
Rn

〈x, θ〉1{〈x,θ〉>t} dμ(x) (θ ∈ Sn−1).

We claim that ft is lower semicontinuous. Indeed, if θj −→ θ, then by Fatou’s lemma,

ft(θ) =

∫
Rn

〈x, θ〉1{〈x,θ〉>t} dμ(x)

≤ lim inf
j→∞

∫
Rn

〈x, θj〉1{〈x,θj〉>t} dμ(x) = lim inf
j→∞

ft(θj).
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Denote by mt the minimum of the function ft on Sn−1, and let θt ∈ Sn−1 be a point
such that ft(θt) = mt. Since S

n−1 is compact, there exists a sequence tj → 0+ such that
θtj → θ for a certain unit vector θ ∈ Sn−1. By (8) and Fatou’s lemma,

0 <

∫
Rn

〈x, θ〉1{〈x,θ〉>0} dμ(x) ≤ lim inf
j→∞

∫
Rn

〈x, θtj 〉1{〈x,θj〉>tj} dμ(x) = lim inf
j→∞

mtj .

Consequently there exists j ≥ 1 such that mtj > 0. The lemma follows with c1 = tj and
c2 = mtj . �

Lemma 2.6. There exists c > 0, depending on μ, with the following property. Let
ψ : Rn → R∪{+∞} be a proper, convex function that is μ-integrable. Denote α = −ψ(0).
Assume that ψ(0) = inf ψ and that

∫
Rn ψ dμ < 0. Then for any x ∈ Rn,

ψ(x) ≤ −α/2 when |x| < c.

Proof. We will prove the lemma with c = min{c1, c2/4} where c1, c2 are the positive
constants from Lemma 2.5. Assume by contradiction that the conclusion of the lemma
fails. Then the convex set A = {x ∈ Rn ; ψ(x) ≤ −α/2} does not contain an open
ball of radius c around the origin. By the convexity of A, there exists θ ∈ Sn−1 such
that 〈x, θ〉 < c for all x ∈ A. By the convexity of the function ψ, for any x ∈ Rn with
〈x, θ〉 ≥ c,

−α

2
< ψ

(
cx

〈x, θ〉

)
≤ c

〈x, θ〉ψ(x) +
(
1− c

〈x, θ〉

)
ψ(0) =

c

〈x, θ〉ψ(x)− α ·
(
1− c

〈x, θ〉

)
.

Consequently, ψ(x) ≥ α〈x, θ〉/(2c)− α for any x ∈ Rn with 〈x, θ〉 ≥ c. Since inf ψ = −α
and c ≤ c1, by Lemma 2.5 we have∫

Rn

ψ dμ =

∫
Rn

ψ(x)1{〈x,θ〉≤c1} dμ(x) +

∫
Rn

ψ(x)1{〈x,θ〉>c1} dμ(x)

≥ −α+

∫
Rn

[ α
2c

· 〈x, θ〉 − α
]
· 1{〈x,θ〉>c1} dμ(x)

≥ −2α+
α

2c
· c2 ≥ −2α+ 2α = 0,

in contradiction to our assumption that
∫
Rn ψ dμ < 0. �

Lemma 2.7. There exists c̃ > 0, depending on μ and p, with the following property. Let
ψ : Rn → R∪{+∞} be a proper, convex function that is μ-integrable. Denote α = −ψ(0).
Assume that ψ(0) = inf ψ and that

∫
Rn ψ dμ < 0. Then,

Iμ,p(ψ) ≥ −α+ c̃α2.

Proof. From Lemma 2.6, for any y ∈ Rn,

ψ∗(y) = sup
x∈Dom(ψ)

[〈x, y〉 − ψ(x)] ≥ sup
x∈Rn,|x|<c

[〈x, y〉+ α/2] =
α

2
+ c|y|.
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Since inf ψ = −α, we deduce that

Iμ,p(ψ) =
∫
Rn

ψ dμ+

(∫
Rn

dy

(ψ∗(y))n+p

)−2/p

≥ −α+

(∫
Rn

dy

(α/2 + c|y|)n+p

)−2/p

= −α+ α2

(∫
Rn

dy

(1/2 + c|y|)n+p

)−2/p

= −α+ c̃α2. �

Lemma 2.8. Assume that ψ : Rn → R∪{+∞} is a μ-integrable, convex function. Then
Dom(ψ) contains the interior of Conv(Supp(μ)). In particular, Dom(ψ) contains the
origin in its interior.

Proof. Otherwise, we could use a hyperplane and separate the convex set Dom(ψ) from
an open ball intersecting Supp(μ). This would imply that ψ is not μ-integrable, a con-
tradiction. �
Proof of Proposition 2.4. Let ψ : Rn → R ∪ {+∞} be a proper, convex function with
ψ(0) < 0 that is μ-integrable. We will show that

(9) Iμ,p(ψ) ≥ − 1

4c̃

where c̃ > 0 is the constant from Lemma 2.7. In the case where
∫
ψ dμ ≥ 0 we have

Iμ,p(ψ) ≥ 0, and (9) is trivial. We may thus assume that

(10)

∫
Rn

ψ dμ < 0.

The origin is in the interior of Dom(ψ), according to Lemma 2.8. From Rockafellar [26,
Theorem 23.4] we learn that there exists w ∈ Rn such that

(11) ψ(x) ≥ ψ(0) + 〈x,w〉 (x ∈ Rn).

Recall that Iμ,p(ψ) = Iμ,p(ψ1) whenever ψ1(x) = ψ(x) + 〈x, v〉 for some v ∈ Rn. By
adding an appropriate linear functional to ψ, we may assume that w = 0 in (11) and
hence ψ(0) = inf ψ. Denote α = −ψ(0), which is a positive number, as follows from (10).
We may now apply Lemma 2.7 and obtain the inequality

Iμ,p(ψ) ≥ −α+ c̃α2 ≥ − 1

4c̃
,

completing the proof of (9). The proposition is thus proven. �
The next proposition is the second step in the proof of Theorem 2.3.

Proposition 2.9. The infimum in Proposition 2.4 is attained.

Again, the proof of Proposition 2.9 relies on a few small lemmas.

Lemma 2.10. There exists a μ-integrable, proper convex function ψ : Rn → R ∪ {+∞}
with ψ(0) < 0 such that Iμ,p(ψ) < 0.

Proof. Let δ > 0 and denote ψδ(x) = −δ + ε|x| for ε = δ1+p/(4n). Then,(∫
Rn

dx

(ψ∗
δ (x))

n+p

)−2/p

=

(∫
B(0,ε)

dx

δn+p

)−2/p

= Aδ3/2

where B(0, ε) = {x ∈ Rn ; |x| < ε} and A = Voln(B(0, 1))−2/p > 0. Consequently,

Iμ,p(ψδ) = Aδ3/2 +

∫
Rn

(−δ + ε|x|) dμ(x) = Aδ3/2 − δ + δ1+p/(4n) ·
∫
Rn

|x| dμ(x).
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By our assumptions on the measure μ, we know that
∫
|x| dμ(x) < ∞. For a small,

positive δ, the leading term in Iμ,p(ψδ) is−δ. Consequently, Iμ,p(ψδ) < 0 for a sufficiently
small δ > 0. �

In order to prove Proposition 2.9, we select a minimizing sequence

{ψ�}�=1,2,...,∞.

In other words, for any � ≥ 1 the function ψ� : R
n → R∪{+∞} is a μ-integrable, proper,

convex function with ψ�(0) < 0 and

Iμ,p(ψ�)
�→∞−−−→ inf

ψ
Iμ,p(ψ)

where the infimum is taken over all μ-integrable, proper, convex functions ψ : Rn →
R ∪ {+∞} with ψ(0) < 0. Thanks to Lemma 2.10, we may select the sequence {ψ�} so
that

(12) sup
�≥1

Iμ,p(ψ�) < 0.

Moreover, we know that Iμ,p(ψ�) remains intact when we add a linear functional to ψ�.
Arguing as in the proof of Proposition 2.4, we may add appropriate linear functionals to
ψ� and assume that

(13) inf
x∈Rn

ψ�(x) = ψ�(0) for � ≥ 1.

Lemma 2.11. We have sup� ψ�(0) < 0 and inf� ψ�(0) > −∞.

Proof. By (13), for any � ≥ 1,

ψ�(0) = inf
x∈Rn

ψ�(x) ≤
∫
Rn

ψ� dμ ≤ Iμ,p(ψ�).

Inequality (12) thus implies that sup� ψ�(0) < 0. Moreover, from (12) it follows that∫
ψ� dμ < 0 for all �. From (12), (13) and Lemma 2.7,

ψ�(0) + c̃(ψ�(0))
2 ≤ Iμ,p(ψ�) < 0 (� ≥ 1).

Hence inf� ψ�(0) ≥ −1/c̃ > −∞. �

Write K ⊆ Rn for the interior of Conv(Supp(μ)). Then K is an open, convex set
containing the origin. Lemma 16 in [12] states that for any nonnegative, μ-integrable,
convex function f : Rn → R ∪ {+∞} and any point x ∈ K we have

(14) f(x) ≤ Cμ(x)

∫
Rn

f dμ,

where Cμ(x) > 0 depends solely on x and μ.

Lemma 2.12. There exists a sequence of integers {�j}j=1,2,... such that ψ�j converges
pointwise on K to a certain convex function ψ : K → R.

Proof. Fix a point x0 ∈ K. We claim that

(15) sup
�≥1

|ψ�(x0)| < +∞.

Indeed, the fact that the sequence {ψ�(x0)}�=1,2,... is bounded from below follows from
(13) and Lemma 2.11. In order to show that this sequence is bounded from above, we
denote

(16) β = − inf {ψ�(x); x ∈ Rn, � ≥ 1} = − inf {ψ�(0); � ≥ 1}
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which is a finite, positive number thanks to Lemma 2.11. Apply (14) for the nonnegative,
μ-integrable, convex function f� = ψ� + β, and obtain

f�(x0) ≤ Cμ(x0)

∫
Rn

f�(x) dμ(x) = Cμ(x0)

∫
Rn

(ψ� + β) dμ

≤ Cμ(x0) (β + Iμ,p(ψ�)) ≤ Cμ(x0)β,

where we have used (12) in the last passage. This shows that sup� f�(x0) < ∞, and
consequently sup� ψ�(x0) < ∞. The proof of (15) is complete. We may now invoke
Theorem 10.9 from Rockafellar [26], thanks to (15), and conclude that there exists a
subsequence {ψ�j} satisfying the conclusion of the lemma. �

Proof of Proposition 2.9. We use the convergent subsequence {ψ�j} from Lemma 2.12.
The function ψ = limj ψ�j is finite and convex on the open, convex set K. Moreover,
ψ(0) ∈ (−∞, 0) as follows from Lemma 2.11. Since ψ�(x) ≥ ψ�(0) for any x ∈ Rn and
� ≥ 1, also

(17) ψ(0) = inf
x∈K

ψ(x) ∈ (−∞, 0).

The function ψ is currently defined only on the set K. In order to have a globally defined
function on Rn, we set ψ(x) = +∞ for x ∈ Rn \K. For x ∈ ∂K, define

(18) ψ(x) = lim
t→1−

ψ(tx).

Since ψ is convex on K, from (17) it follows that the function t �→ ψ(tx) is monotone
nondecreasing in t ∈ (0, 1), hence the limit in (18) is well defined. Moreover, the function
ψ : Rn → R ∪ {+∞} is a proper, convex function, since on K we have ψ = supt∈(0,1) ft

where ft(x) = ψ(tx) is finite, convex and continuous on K. The measure μ is supported
on the closure K. From the pointwise convergence onK, it follows that ψ�j (tx) −→ ψ(tx)

for any 0 < t < 1 and x ∈ K. We claim that by Fatou’s lemma, for any 0 < t < 1,

(19)

∫
K

ψ(tx) dμ(x) ≤ lim inf
j→∞

∫
K

ψ�j (tx) dμ(x) ≤ lim inf
j→∞

∫
K

ψ�j (x) dμ(x).

Indeed, the use of Fatou’s lemma is legitimate according to (13) and Lemma 2.11, because
infx,� ψ�(x) > −∞. Relation (13) also implies that ψ�(tx) ≤ ψ�(x) for any x ∈ K, � ≥ 1
and 0 < t < 1, completing the justification of (19). Next, we use the fact that ψ(tx) ↗
ψ(x) as t → 1− for any x ∈ K. Since ψ is bounded from below, we may use the monotone
convergence theorem, and upgrade (19) to the bound∫

Rn

ψ dμ =

∫
K

ψ dμ = lim
t→1−

∫
K

ψ(tx) dμ(x)

≤ lim inf
j→∞

∫
K

ψ�j dμ = lim inf
j→∞

∫
Rn

ψ�j dμ.

(20)

Recall from (12) that supj
∫
ψ�j dμ < 0. From (17) and (20) it follows that ψ is a

μ-integrable, proper, convex function with ψ(0) < 0. All that remains is to prove that

(21) Iμ,p(ψ) ≤ lim inf
j→∞

Iμ,p(ψ�j ).

The convex function ψ satisfies K ⊆ Dom(ψ) ⊆ K, and ψ�j −→ ψ pointwise on K as
j → ∞. From Lemma 2.2,

(22) Ip(ψ) ≤ lim inf
j→∞

Ip(ψ�j ) and hence I2
p(ψ) ≤ lim inf

j→∞
I2
p(ψ�j ).

Now (21) follows from (20), (22) and the definition of Iμ,p. �
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From the proof of Proposition 2.9 we see that the minimizer ψ may be selected so
that ψ(x) = +∞ for any x ∈ Rn \ K. Theorem 2.3 now follows from Proposition 2.4,
Proposition 2.9 and Lemma 2.10.

§3. q-moment measures

Let q > 0 and let ϕ : Rn → R be a positive, convex function such that Zϕ :=∫
Rn ϕ−(n+q) < ∞. The function ϕ is differentiable almost everywhere in Rn because
it is convex. We define the q-moment measure of ϕ to be the push-forward of the proba-
bility measure on Rn with density Z−1

ϕ /ϕn+q under the measurable map x �→ ∇ϕ(x). In
other words, a Borel probability measure μ on Rn is the q-moment measure of ϕ if for
any bounded, continuous function b : Rn → R,

(1)

∫
Rn

b(y) dμ(y) =

∫
Rn

b(∇ϕ(x))

ϕn+q(x)

dx

Zϕ
.

The moment measure of ϕ is a well-defined probability measure on Rn, whenever ϕ is a
positive, convex function on Rn such that ϕ−(n+q) is integrable.

Lemma 3.1. Let q > 0 and let ϕ : Rn → R be a positive, convex function. Then the
function ϕ−(n+q) is integrable if and only if lim|x|→∞ ϕ(x) = +∞. Moreover, in this case
there exist α, β > 0 such that ϕ(x) ≥ α+ β|x| for all x ∈ Rn.

Proof. Assume that ϕ−(n+q) is integrable. Then for any R > 0, the open convex set {x ∈
Rn ; ϕ(x) < R} has a finite volume and hence it is bounded. Therefore lim|x|→∞ ϕ(x) =
+∞. Conversely, assume that ϕ(x) tends to infinity as |x| → ∞. Then there exists R > 0
such that ϕ(x) ≥ ϕ(0) + 1 whenever |x| ≥ R. By convexity, for any |x| > R,

ϕ(0) + 1 ≤ ϕ

(
R

|x|x
)

≤
(
1− R

|x|

)
ϕ(0) +

R

|x|ϕ(x).

Therefore ϕ(x) ≥ ϕ(0) + |x|/R for all |x| > R. By continuity, c = min|x|≤R ϕ(x) is

positive. Hence ϕ(x) ≥ c/2 + min{1/R, c/(2R)} · |x| for all x ∈ Rn, and ϕ−(n+q) is
integrable. �

Lemma 3.1 demonstrates that if ϕ−(n+q) is integrable for some q > 0, then it is
integrable for all q > 0. The moment measures from [12] correspond in a sense to the
case of q = ∞, because in [12] we push forward the measure on Rn with density exp(−ϕ)
via the map x �→ ∇ϕ(x). For a convex function ϕ : Rn → R and for λ > 0 we say that

(λ× ϕ)(x) = λϕ(x/λ) (x ∈ Rn)

is the λ-dilation of ϕ. Note that the q-moment measure of ϕ is exactly the same as the
q-moment measure of its dilation λ× ϕ, assuming that one of these q-moment measures
exists. It is also clear that replacing ϕ(x) by its translation ϕ(x−x0), for some x0 ∈ Rn,
does not have any effect on the resulting q-moment measure.

Theorem 3.2. Let q > 1 and let μ be a compactly supported Borel probability measure
on Rn whose barycenter lies at the origin. Assume that the origin is in the interior of
Conv(Supp(μ)).

Then there exists a positive, convex function ϕ : Rn → R whose q-moment measure
is μ. This convex function ϕ is uniquely determined up to translation and dilation.

Theorem 3.2 is a variant for q-moment measures of a result proven in [12] in the case
of moment measures. The case where μ is not compactly supported will not be discussed
in this paper, although we expect that, like in [12], essential-continuity will play a role
in the analysis of this case. We also restrict our attention to the case of q > 1. The
necessity of the barycenter condition in Theorem 3.2 follows from the next statement.
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Proposition 3.3. Let q > 1 and let μ be a compactly supported Borel probability mea-
sure on Rn. Assume that μ is the q-moment measure of a positive, convex function
ϕ : Rn → R. Then the barycenter of μ lies at the origin, which belongs to the interior of
Conv(Supp(μ)).

Proof. We may substitute b(x) = xi in (1), because b is bounded on Supp(μ). This shows
that for i = 1, . . . , n,∫

Rn

xi dμ(x) =

∫
Rn

∂iϕ

ϕn+q
= − 1

n+ q − 1

∫
Rn

∂i

(
1

ϕn+q−1

)
= 0,

along the lines of [12, Lemma 4]. Therefore the barycenter of μ lies at the origin. Assume
by contradiction that the origin is not in the interior of Conv(Supp(μ)). Since the
barycenter of μ lies at the origin, necessarily μ is supported in a hyperplane of the form
H = θ⊥ for some θ ∈ Sn−1. Since μ is the q-moment measure of ϕ, we see that

(2) ∂θϕ(x) = 〈∇ϕ(x), θ〉 = 0 for almost all x ∈ Rn.

The function ϕ is locally Lipschitz in Rn, being a finite, convex function. The relation (2)
shows that ϕ is constant on almost any line parallel to θ, contradicting the integrability
of ϕ−(n+q). �

The proof of Theorem 3.2 occupies most of the remainder of this section. We begin
the proof with the following claim.

Lemma 3.4. Let q > 1 and let ϕ : Rn → R be a positive, convex function with∫
Rn

ϕ−(n+q) < ∞.

Write μ for the q-moment measure of ϕ, and assume that μ is compactly supported. Set
ψ = ϕ∗. Then, ∫

Rn

|ψ| dμ < ∞.

Proof. From the definition of the Legendre transform, it follows that for any point x ∈ Rn

at which ϕ is differentiable,

〈x,∇ϕ(x)〉 = ψ(∇ϕ(x)) + ϕ(x).

For almost any x ∈ Rn we have ∇ϕ(x) ∈ Supp(μ). Since μ is compactly supported, we
see that |∇ϕ(x)| is an L∞-function in Rn. Consequently,∫

Rn

ϕ−(n+q)

∫
Rn

|ψ| dμ =

∫
Rn

|ψ(∇ϕ(x))|
ϕn+q(x)

dx ≤
∫
Rn

|〈x,∇ϕ(x)〉|+ ϕ(x)

ϕn+q(x)
dx < ∞,

by Lemma 3.1, since q > 1. This completes the proof. �
Lemma 3.5. Let A, p > 0 and let μ be as in Theorem 3.2. Let ψ : Rn → R ∪ {+∞} be
a μ-integrable, proper, convex function such that Dom(ψ) is bounded. For t ∈ R denote
ψt = ψ+ t and ϕt = ψ∗

t . Then for any t < −ψ(0), the function ϕt : R
n → R is a positive,

convex function with
∫
Rn ϕ

−(n+p)
t ∈ (0,∞). Moreover, there exists t < −ψ(0) with∫

Rn

ϕ
−(n+p)
t (x) dx = A.

Proof. The set Dom(ψ) is assumed to be bounded. Set

L = 1 + sup
x∈Dom(ψ)

|x| < ∞.

Denoting ϕ = ψ∗, we learn from Corollary 13.3.3 in Rockafellar [26] that the convex
function ϕ : Rn → R is an L-Lipschitz function. Lemma 2.8 implies that ψ is finite on an
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open neighborhood of the origin. Fix t < −ψ(0). By the continuity of ψ near the origin,
there exists εt > 0, depending on ψ and t, such that

ψt(x) < −εt when |x| < εt.

Hence, for any y ∈ Rn and t < −ψ(0),

(3) ϕt(y) = sup
x∈Dom(ψt)

[〈x, y〉 − ψt(x)] ≥ sup
|x|<εt

[〈x, y〉+ εt] = εt + εt|y|.

Set t0 = −ψ(0), and for t ∈ (−∞, t0) define

(4) I(t) =

∫
Rn

dx

(ϕt(x))n+p
=

∫
Rn

dx

(ϕ(x)− t)n+p
.

From (3) it follows that the function ϕ
−(n+p)
t is integrable on Rn. The positive function

ϕ : Rn → R is L-Lipschitz, hence the integral of ϕ
−(n+p)
t is positive. The function I

is clearly monotone nondecreasing in t ∈ (−∞, t0), and by the monotone convergence
theorem, I is continuous on (−∞, t0). In order to conclude the lemma by the mean value
theorem, it suffices to prove that

lim
t→−∞

I(t) = 0, lim
t→t−0

I(t) = +∞.

The fact that I(t) → 0 as t → −∞ is evident from (4) and the monotone convergence
theorem. It remains to show that I(t) → +∞ as t → t−0 . With any t < t0 we associate
a point x0(t) ∈ Rn that satisfies

ϕ(x0(t)) <
t0 − t

2
+ inf

x∈Rn
ϕ(x) =

t0 − t

2
− ψ(0) =

t0 − t

2
+ t0.

For any t < t0, denoting r = (t0 − t)/(2L), we see that ϕ(x) ≤ ϕ(x0(t)) + (t0 − t)/2 for
any x in the ball B(x0(t), r). Therefore, for any t < t0,

I(t) =

∫
Rn

dx

(ϕ(x)− t)n+p

≥
∫
B(x0(t),r)

dx

(ϕ(x)− t)n+p
≥ κnr

n

(2t0 − 2t)n+p
=

κn2
−2n−pL−n

(t0 − t)p

where κn = Voln(B(0, 1)) is the volume of the Euclidean unit ball. Since p > 0,

lim
t→t−0

I(t) ≥ lim
t→t−0

κn2
−2n−pL−n

(t0 − t)p
= +∞

and the lemma is proven. �

Lemma 3.6. Let q > 1 and let μ be as in Theorem 3.2. Let ψ : Rn → R ∪ {+∞} be the
μ-integrable, proper, convex function whose existence is guaranteed by Theorem 2.3 with
p = q − 1.

Denote ϕ = ψ∗. Then ϕ : Rn → R is a positive function and the probability measure
ν on Rn with density Z−1

ϕ /ϕn+q is well defined. Moreover, for any function ψ1 : R
n →

R ∪ {+∞} of the form ψ1 = ψ + b, with b : Rn → R being a bounded function, we have

(5)

∫
Rn

ψ dμ+

∫
Rn

ψ∗ dν ≤
∫
Rn

ψ1 dμ+

∫
Rn

ψ∗
1 dν.
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Proof. Write K for the closure of Conv(Supp(μ)), a compact set in Rn. Theorem 2.3
states that ψ(0) < 0 and that Dom(ψ) ⊆ K. Therefore, by Lemma 3.5, the function
ϕ : Rn → R is a positive, convex function with

(6)

∫
Rn

ϕ−(n+p) ∈ (0,+∞).

It thus follows from Lemma 3.1 that the probability measure ν is well defined. The
function ψ∗∗

1 is proper, convex, and it satisfies ψ − C ≤ ψ∗∗
1 ≤ ψ1 ≤ ψ + C for some

C > 0. It suffices to prove (5) under the additional assumption that ψ1 is proper and
convex: otherwise, replace ψ1 with the smaller ψ∗∗

1 , and observe that the right-hand side
of (5) cannot increase under such a replacement.

Hence we may assume that ψ1 is a μ-integrable, proper, convex function. Moreover,
the convex set Dom(ψ1) = Dom(ψ) is bounded according to Theorem 2.3. The right
hand-side of (5) is not altered if we add a constant to the function ψ1, because μ and
ν are probability measures. By adding an appropriate constant to ψ1 and by using
Lemma 3.5 and (6), we may assume that the convex function ψ1 satisfies ψ1(0) < 0 and

(7)

∫
Rn

dx

ϕn+p
1 (x)

=

∫
Rn

dx

ϕn+p(x)

where ϕ1 = ψ∗
1 : R

n → R is a positive function. Since ψ1(0) < 0, by Theorem 2.3,

(8)

∫
Rn

ψ dμ+

(∫
Rn

1

ϕn+p

)−2/p

≤
∫
Rn

ψ1 dμ+

(∫
Rn

1

ϕn+p
1

)−2/p

.

From (7) and (8),

(9)

∫
Rn

ψ dμ ≤
∫
Rn

ψ1 dμ.

Note the elementary inequality

n+ p

tn+p+1
(t− s) ≤ 1

sn+p
− 1

tn+p
(s, t > 0),

which follows from the convexity of the function t �→ t−(n+p) on (0,∞). The last in-
equality implies that

(10)

∫
Rn

(ϕ− ϕ1)
n+ p

ϕn+p+1
≤
∫
Rn

[
1

ϕn+p
1

− 1

ϕn+p

]
= 0

where we have used (7) in the last passage. Since ϕ1 − ϕ is a bounded function, all
integrals in (10) converge. From (10) and the definition of the measure ν,

(11)

∫
Rn

ϕdν ≤
∫
Rn

ϕ1 dν.

The desired inequality (5) follows from (9) and (11). �

Proof of the existence part in Theorem 3.2. Lemma 3.6 is the variational problem asso-
ciated with optimal transportation, see Brenier [7] and Gangbo and McCann [16]. Let
ψ, ϕ = ψ∗ and ν be as in Lemma 3.6. Then ϕ : Rn → R is a positive, convex function
on Rn. A standard argument from [7, 16] leads us from (5) to the conclusion that ∇ϕ
pushes forward the measure ν to the measure μ.

Let us provide some details. The idea of this standard argument is to apply (5) with
the function ψ1 = ψ + εb, where ε > 0 is a small number and b : Rn → R is a bounded,
continuous function. Denoting ψε = ψ + εb for 0 ≤ ε < 1 and ϕε = ψ∗

ε , one verifies that

dϕε(x)

dε

∣∣∣
ε=0

= −b(∇ϕ(x))



AFFINE HEMISPHERES OF ELLIPTIC TYPE 121

at any point x ∈ Rn at which ϕ is differentiable (see, e.g., Berman and Berndtsson
[3, Lemma 2.7] for a short proof). Consequently, by the bounded convergence theorem,

(12)
d

dε

(∫
Rn

ψε dμ+

∫
Rn

ϕε dν

)∣∣∣∣
ε=0

=

∫
Rn

b(x) dμ(x)−
∫
Rn

b(∇ϕ(x)) dν(x).

However, the expression in (12) must vanish according to (5). Recalling that the density
of ν is proportional to ϕ−(n+q), we conclude that (1) is valid for any bounded, continuous
function b. Therefore μ is the q-moment measure of ϕ. �

Our next inequality is analogous to Theorem 8 in [12], and may be viewed as an “above
tangent” version of the Borell–Brascamp–Lieb inequality.

Proposition 3.7. Let q > 1 and let μ be as in Theorem 3.2. Suppose that ϕ0 : R
n →

(0,∞) is a convex function whose q-moment measure is μ. Denote p = q − 1 and
ψ0 = ϕ∗

0. Then ψ0 is μ-integrable, and for any μ-integrable, proper, convex function
ψ1 : R

n → R ∪ {+∞} with ψ1(0) < 0, denoting ϕ1 = ψ∗
1 ,(∫

Rn

1

ϕn+p
1

)−2/p

≥
(∫

Rn

1

ϕn+p
0

)−2/p

+
2(n+ p)

∫
Rn ϕ

−(n+p+1)
0

p
( ∫

Rn ϕ
−(n+p)
0

) p+2
p

∫
Rn

(ψ0 − ψ1) dμ.

We begin the proof of Proposition 3.7 with two reductions.

Lemma 3.8. It suffices to prove Proposition 3.7 under the additional requirements that
Dom(ψ1) ⊆ Dom(ψ0) and that ψ1 − ψ0 is bounded from below on Dom(ψ0).

Proof. From Lemma 3.1, it follows that ψ0(0) < 0. For N > 0 and x ∈ Rn define
fN (x) = max{ψ1(x), ψ0(x) − N}. The functions ψ0 and ψ1 are negative at zero, and
hence fN is a proper, convex function on Rn with fN (0) < 0 and Dom(fN ) ⊆ Dom(ψ0).
The function ψ0 is μ-integrable according to Lemma 3.4. The μ-integrability of ψ0 and
ψ1 implies that fN is μ-integrable. Assuming that Proposition 3.7 is proven under the
additional requirement in the formulation of the lemma, we may assert that

(13)

(∫
Rn

1

(f∗
N )n+p

)−2/p

≥
(∫

Rn

1

ϕn+p
0

)−2/p

+
2(n+ p)

∫
Rnϕ

−(n+p+1)
0

p
(∫

Rn ϕ
−(n+p)
0

) p+2
p

∫
Rn

(ψ0−fN ) dμ.

All that remains is to prove that

(14)

∫
Rn

ψ1 dμ = lim
N→∞

∫
Rn

fN dμ

and

(15)

∫
Rn

1

ϕn+p
1

≤ lim inf
N→∞

∫
Rn

1

(f∗
N )n+p

.

Since fN ≥ ψ1, we have f∗
N ≤ ϕ1 and (f∗

N )−(n+p) ≥ ϕ
−(n+p)
1 . Hence (15) is trivial.

Note that fN ↘ ψ1 as N → ∞ pointwise in Dom(ψ0). Since ψ0 is μ-integrable, the set
Dom(ψ0) has a full μ-measure. Consequently, fN (x) ↘ ψ1(x) as N → ∞ for μ-almost
any x ∈ Rn. The monotone convergence theorem implies (14). �

Lemma 3.9. It suffices to prove Proposition 3.7 under the additional requirement that
Dom(ψ1) = Dom(ψ0) and that ψ1 − ψ0 is bounded on Dom(ψ0).

Proof. According to Lemma 3.8, we may assume that for some C > 0,

(16) ψ1(x) + C ≥ ψ0(x) (x ∈ Rn).
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From (16), it follows that for any N > 0,

(17) ϕ0 −N ≤ max{ϕ1, ϕ0 −N} ≤ ϕ0 + C.

For N > 0, let us define

(18) gN = (max{ϕ1, ϕ0 −N})∗ .

Since ϕ0 is a proper, convex function, from (17) it follows that gN : Rn → R∪{+∞} is a
proper, convex function as well. It also follows from (17) that Dom(gN ) = Dom(ψ0) and
that gN − ψ0 is a bounded function on Dom(ψ0). The μ-integrability of ψ0, proved in
Lemma 3.4, implies that gN is μ-integrable. We learn from (18) that gN (0) ≤ ψ1(0) < 0.
Assuming that Proposition 3.7 is proven under the additional requirement in the formu-
lation of this lemma, we may assert that (13) holds true when fN is replaced by gN . All
that remains to prove is that

(19)

∫
Rn

ψ1 dμ ≥ lim sup
N→∞

∫
Rn

gN dμ

and

(20)

∫
Rn

1

ϕn+p
1

≤ lim inf
N→∞

∫
Rn

1

(g∗N )n+p
.

Since ψ1 ≥ gN , inequality (19) is fulfilled trivially. Since Dom(ϕ0) = Rn,from (18) it
follows that

g∗N = max{ϕ1, ϕ0 −N} N→∞−−−−→ ϕ1

pointwise in Rn. Now (20) follows from Fatou’s lemma. �

Proof of Proposition 3.7. The μ-integrability of ψ0 follows from Lemma 3.4, while Lem-
ma 3.1 implies that inf ϕ0 > 0. According to Lemma 3.9, we may assume that Dom(ψ0) =
Dom(ψ1), and that

(21) M = sup
Dom(ψ0)

|ψ1 − ψ0| < ∞.

Denote f(x) = ψ0(x) − ψ1(x) for x ∈ Dom(ψ0) and f(x) = +∞ for x �∈ Dom(ψ0). Set
ψt = (1− t)ψ0 + tψ1 and ϕt = ψ∗

t . Thus Dom(ψt) = Dom(ψ0) while ψt = ψ0 − tf in the
set Dom(ψ0). At any point x ∈ Rn at which ϕ0 is differentiable, for any 0 ≤ t ≤ 1 we
have

(22) ϕt(x) = ψ∗
t (x) = sup

y∈Dom(ψ0)

[〈x, y〉 − ψ0(y) + tf(y)]
“y=∇ϕ0(x)”

≥ ϕ0(x)+tf(∇ϕ0(x)).

Denote m = inf ϕ0, which is a finite, positive number, thanks to the integrability of

ϕ
−(n+q)
0 and to Lemma 3.1. By the Lagrange mean-value theorem from calculus, for any

a, b, t ∈ R with 0 < t < m/(2M), a ≥ m and |b| ≤ M ,

(23)
1

t

[
1

(a+ tb)n+p
− 1

an+p

]
= − n+ p

ξn+p+1
b ≤ − n+ p

an+p+1
b+

Cn,p,m,M

an+p+1
· t

for some ξ between a and a + tb, where Cn,p,m,M > 0 depends only on n, p,m and M .
From (22) and (23) it follows that for any t ∈ (0,m/(2M)),

1

t

∫
Rn

[
1

ϕn+p
t

− 1

ϕn+p
0

]
≤ 1

t

∫
Rn

[
1

(ϕ0(x) + tf(∇ϕ0(x)))n+p
− 1

ϕn+p
0 (x)

]
dx

≤ −(n+ p)

∫
Rn

f ◦ ∇ϕ0

ϕn+p+1
0

+ Ct

∫
Rn

1

ϕn+p+1
0

t→0+−−−−→ −(n+ p)

∫
Rn

f ◦ ∇ϕ0

ϕn+p+1
0

,

(24)
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where C = Cn,p,m,M and we have used the facts that ϕ
−(n+p+1)
0 is integrable and that

f ◦∇ϕ0 is an L∞-function. Relation (21) implies that |ϕ0(x)−ϕ1(x)| ≤ M for all x ∈ Rn.
Hence Dom(ϕ0) = Dom(ϕ1) = Rn. Consequently, the function

I(t) =

(∫
Rn

1

ϕn+p
t

)−2/p

(0 ≤ t ≤ 1)

satisfies I(0), I(1) ∈ [0,+∞). By Lemma 2.1, the function I is the square of a nonnega-
tive, convex funtion on the interval [0, 1]. Therefore I is a convex function. Consequently,
the function I is finite and upper semicontinuous on [0, 1], being a convex function on the
interval [0, 1] which is finite at the endpoints of the interval. The lower semicontinuity of
I at the origin follows from (24). Hence I is continuous at the origin, and by convexity,

I(1)− I(0) ≥ lim inf
t→0+

I(t)− I(0)

t

= −2

p

(∫
Rn

1

ϕn+p
0

)− p+2
p

· lim sup
t→0+

1

t

∫
Rn

[
1

ϕn+p
t

− 1

ϕn+p
0

]

≥ 2(n+ p)

p

(∫
Rn

1

ϕn+p
0

)− p+2
p
∫
Rn

f ◦ ∇ϕ0

ϕn+p+1
0

,

(25)

where we have used (24) in the last passage. The proposition follows from (25) and from
the definition of μ as the q-moment measure of ϕ0. �

The proof of Proposition 3.7 looks rather different from the transportation proof of
Theorem 8 in [12]. The main difference is that above we apply the Borell–Brascamp–Lieb
inequality in the form of Lemma 2.1, while in [12] we essentially reprove the Prékopa
theorem.

Proof of the uniqueness part in Theorem 3.2. Assume that

ϕ0, ϕ1 : R
n → (0,+∞)

are convex functions whose q-moment measure is μ. Our goal is to prove that there exists
λ > 0 and x0 ∈ Rn such that

(26) ϕ0(x) = λϕ1(x0 + x/λ) for x ∈ Rn.

By Lemma 3.1, the integrals
∫
Rn ϕ

−(n+r)
i converge for all r > 0 and i = 0, 1, because

ϕ0 and ϕ1 possess q-moment measures. Replacing ϕ0(x) by its dilation (λ × ϕ0)(x) =
λϕ0(x/λ), we may assume that

(27)

(∫
Rn

1

ϕn+p
0

)− p+2
p
∫
Rn

1

ϕn+p+1
0

=

(∫
Rn

1

ϕn+p
1

)− p+2
p
∫
Rn

1

ϕn+p+1
1

.

Indeed, replacing ϕ0 by λ×ϕ0 has the effect of multiplying the left-hand side of (27) by
λ, hence we may select an appropriate dilation of ϕ0 and assume that (27) holds true.
Denote ψi = ϕ∗

i for i = 0, 1 and set

ψ1/2 = (ψ0 + ψ1)/2.

From Lemma 3.1 it follows that inf ϕi > 0 for i = 0, 1. Therefore ψi(0) = − inf ϕi < 0
for i = 0, 1 and consequently ψ1/2(0) < 0. Denote ϕ1/2 = ψ∗

1/2. Lemma 2.1 implies that

(28)

(∫
Rn

1

ϕn+p
1/2

)−1/p

≤ 1

2

[(∫
Rn

1

ϕn+p
0

)−1/p

+

(∫
Rn

1

ϕn+p
1

)−1/p
]
.
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According to Lemma 2.1(iii), when equality occurs in (28), there exists λ > 0 and
x0 ∈ Rn for which (26) holds true. All that remains to show is that equality does occur
in (28). The functions ψ0 and ψ1 are μ-integrable, according to Lemma 3.4. Hence
also ψ1/2 = (ψ0 + ψ1)/2 is μ-integrable. Denote by α the quantity in (27). Applying
Proposition 3.7 for ψ0 and ψ1/2, we obtain(∫

Rn

1

ϕn+p
1/2

)−2/p

≥
(∫

Rn

1

ϕn+p
0

)−2/p

+
2(n+ p)

p
α

∫
Rn

(ψ0 − ψ1/2) dμ.

Applying Proposition 3.7 for ψ1 and ψ1/2, we obtain(∫
Rn

1

ϕn+p
1/2

)−2/p

≥
(∫

Rn

1

ϕn+p
1

)−2/p

+
2(n+ p)

p
α

∫
Rn

(ψ1 − ψ1/2) dμ.

Adding these two inequalities, and using the relation 2ψ1/2 = ψ0 + ψ1, we have

(29)

(∫
Rn

1

ϕn+p
1/2

)−2/p

≥ 1

2

[(∫
Rn

1

ϕn+p
0

)−2/p

+

(∫
Rn

1

ϕn+p
1

)−2/p
]
.

From (29) we deduce that equality occurs in (28), because
√
(a2 + b2)/2 ≥ (a+ b)/2 for

all a, b ≥ 0. This completes the proof. �

For a smooth function f : Rn → R we write ∇2f(x) for the Hessian matrix of f at
the point x ∈ Rn. A smooth function f : L → R is strongly convex, where L ⊆ Rn is a
convex, open set, if ∇2f(x) is positive definite for any x ∈ L. Suppose that L ⊆ Rn is
a nonempty, open, bounded, convex set. We are interested in smooth, convex solutions
ϕ : Rn → (0,∞) to the equation with the constraint

(30)

{
det∇2ϕ = C/ϕn+2 in Rn,

∇ϕ(Rn) = L,

where C > 0 is a positive number. Here, of course, ∇ϕ(Rn) = {∇ϕ(x) ; x ∈ Rn}. Thanks
to the regularity theory for optimal transportation developed by Caffarelli [8] and Urbas
[27], Theorem 3.2 admits the following corollary.

Theorem 3.10. Let L ⊆ Rn be a nonempty, open, bounded, convex set. Then there exists
a smooth, positive, convex function ϕ : Rn → R solving (30) if and only if the barycenter
of L lies at the origin. Moreover, this convex function ϕ is uniquely determined up to
translation and dilation.

Proof. Let μ be the uniform measure on L, normalized to be a probability measure.
Assume first that the barycenter of L lies at the origin. Then the origin belongs to
the interior of Supp(μ). Applying Theorem 3.2 with q = 2, we obtain a positive convex
function ϕ : Rn → R whose q-moment measure is μ. That is, for any bounded, continuous
function b : L → R,

(31)

∫
L

b(y) dy = CL,ϕ

∫
Rn

b(∇ϕ(x))

ϕn+2(x)
dx,

where CL,ϕ = Voln(L)/
∫
Rn ϕ−(n+2). Caffarelli’s regularity theory for optimal trans-

portation (see [8] and the Appendix in [1]) implies that ϕ is C∞-smooth in Rn. From
(31) and from the change-of-variables formula, it follows that for any x ∈ Rn,

(32) det∇2ϕ(x) =
CL,ϕ

ϕn+2(x)
.
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In particular, the Hessian ∇2ϕ(x) is invertible and hence positive definite for any x ∈ Rn.
Since ϕ : Rn → R is a smooth, strongly convex function, the set ∇ϕ(Rn) is convex and
open, according to Theorem 26.5 in Rockafellar [26] or to Section 1.2 in Gromov [17].
From (31) we obtain that ∇ϕ(Rn) = L, thus ϕ solves (30).

Moreover, we claim that the smooth, positive, convex solution ϕ to (30) is uniquely
determined up to translation and dilation. Indeed, any such solution ϕ is strongly con-
vex, and consequently ∇ϕ is a diffeomorphism between Rn and the convex, open set
∇ϕ(Rn) = L. From (30) and the change-of-variables formula we thus learn that μ is
the q-moment measure of ϕ with q = 2. By Theorem 3.2, the function ϕ is uniquely
determined up to translation and dilation.

In order to prove the other direction of the theorem, assume that ϕ is a smooth,
positive, convex solution to (30). As explained in the preceding paragraphs, μ is the
q-moment measure of ϕ, with q = 2. Proposition 3.3 now shows that the barycenter of
μ lies at the origin. �

§4. The affine hemisphere equations

In this section we review the partial differential equations for affinely-spherical hy-
persurfaces described by Tzitzéica [24, 25], Blaschke [4] and Calabi [10]. Recall from §1
the definition of the affine normal line �M (y) which is a line in Rn+1 passing through
the point y of the smooth, connected, locally strongly convex hypersurface M ⊂ Rn+1.
We use y = (x, t) ∈ Rn × R as coordinates in Rn+1. For a set L ⊆ Rn and a function
ψ : L → R denote

GraphL(ψ) = {(x, ψ(x)) ; x ∈ L} ⊆ Rn × R = Rn+1.

The affine normal line �M (y) depends on the third order approximation to M near y, as
shown in the following lemma.

Lemma 4.1. Let M ⊂ Rn+1 be a smooth, connected, locally strongly convex hypersurface.
Let L ⊆ Rn be an open, convex set containing the origin. Assume that U ⊆ Rn+1 is an
open set such that

M ∩ U = GraphL(ψ)

where ψ : L → R is a smooth, strongly convex function with ψ(0) = 0,∇ψ(0) = 0 and
∇2ψ(0) = Id. Here, Id is the identity matrix.

Then for y0 = (0, 0) ∈ M , the line �M (y0) is the line passing through the point y0 in
the direction of the vector

(1)
(
− (∇2ψ(0))−1 · ∇(log det∇2ψ)(0), n+ 2

)
∈ Rn × R = Rn+1.

Proof. The vector v = (0, 1) ∈ Rn × R is pointing to the convex side of M at the
point y0. The tangent space to M at the point y0 is H = Ty0

M = {(x, 0) ; x ∈ Rn}.
For a sufficiently small t > 0, the section Mt = M ∩ (H + tv) encloses an n-dimensional
convex body Ωt ⊂ H + tv given by

Ωt = {(x, t) ∈ Rn × R ; ψ(x) ≤ t} .
Denote

aijk = ∂ijkψ(0) =
∂3ψ

∂xi∂xj∂xk
(0).

By Taylor’s theorem, for a sufficiently small t > 0,

Ωt =

{
(x, t) ∈ Rn × R;

|x|2
2

+
1

6

n∑
i,j,k=1

aijkxixjxk +O(|x|4) ≤ t

}
,
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where O(|x|4) is an abbreviation for an expression that is bounded in absolute value by
C|x|4, where C depends only on M . By using the spherical-coordinates representation
of Ωt, we see that for a sufficiently small t > 0,

Ωt/2√
t

=

{(
rθ,

√
t/2

)
; θ ∈ Sn−1, 0 ≤ r ≤ rt(θ) = 1−

∑n
i,j,k=1 aijkθiθjθk

6

√
t+O(t)

}
,

where t−1/2 ·Ωt/2 = {y/
√
t; y ∈ Ωt/2}. Consequently, the barycenter satisfies bar(Ωt/2) =

(xt, t/2) for

xt =
√
t
n
∫
Sn−1 θ rt(θ)

n+1 dθ

(n+ 1)
∫
Sn−1 rt(θ)n dθ

= −t · n
6
·
∫
Sn−1

θ

( n∑
i,j,k=1

aijkθiθjθk

)
dσn−1(θ) +O(t3/2),

where σn−1 is the uniform probability measure on Sn−1. Let X = (X1, . . . , Xn) be a
standard Gaussian random vector in Rn, and recall that EX2

i = 1 and EX4
i = 3 for

all i. For any homogenous polynomial p of degree 4 in n real variables, we know that
Ep(X) = n(n+ 2)

∫
Sn−1 p(θ) dσn−1(θ). Hence,

bar(Ωt/2) =

(
− t

n

6n(n+ 2)
EX

[ n∑
i,j,k=1

aijkXiXjXk

]
+O(t3/2), t/2

)
.

Consequently, the line �M (y0) is in the direction of the vector(
− EX

[ n∑
i,j,k=1

∂ijkψ(0)XiXjXk

]
, 3(n+ 2)

)
= (−3∇(Δψ)(0), 3(n+ 2)) ,

where Δψ =
∑n

i=1 ∂
iiψ. Since ∇2ψ(0) = Id, we see that

∇(Δψ)(0) =
(
∇2ψ(0)

)−1 · ∇(log det∇2ψ)(0),

and the lemma is proven. �

Suppose that V is a finite-dimensional linear space over R, and let ψ : V → R be a
smooth, strongly convex function. In general it is impossible to identify a specific vector
in V as the gradient of the function ψ at the origin, unless we introduce additional
structure such as a scalar product. Nevertheless, a simple and useful observation is that
the vector

(2)
(
∇2ψ(0)

)−1 · ∇
(
log det∇2ψ

)
(0)

is a well-defined vector in V . This means that for any scalar product that one may
introduce in V , we may compute the expression in (2) relative to this scalar product,
and the result will always be the same vector in V .

Lemma 4.2. Let M ⊂ Rn+1 be a hypersurface and let L ⊆ Rn be a nonempty, open,
convex set. Suppose that ψ : Rn → R∪{+∞} is a proper, convex function whose restric-
tion to the set L is finite, smooth and strongly convex. Denote Λ(x) = log det∇2ψ(x)
for x ∈ L. Assume that

M = GraphL(ψ).

Let x0 ∈ L and denote y0 = (x0, ψ(x0)) ∈ M . Then the affine normal line �M (y0) ⊆ Rn+1

is the line passing through the point y0 ∈ Rn+1 in the direction of the vector

(3)
(
− (∇2ψ)−1∇Λ, n+ 2−

〈
(∇2ψ)−1∇Λ,∇ψ

〉)
∈ Rn × R = Rn+1,

where all expressions are evaluated at the point x0.
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Proof. Translating, we may assume that x0 = 0 and ψ(0) = 0. Consider first the case
where also ∇ψ(0) = 0. In this case, the vector in (3) does not depend on the choice
of the Euclidean structure in Rn, hence we may switch to a Euclidean structure for
which ∇2ψ(0) = Id. Thus (3) follows from Lemma 4.1 in this case. In the case where
v := ∇ψ(0) is a nonzero vector, we apply the linear map in Rn+1,

(x, t) �→ (x, t− 〈x, v〉) .
This linear map transforms M to the graph of the convex function ψ1(x) = ψ(x)−〈x, v〉,
and it transforms the vector in (3) to the vector(

− (∇2ψ1(0))
−1 · ∇(log det∇2ψ1)(0), n+ 2

)
∈ Rn+1.

Since ∇ψ1(0) = 0, we have reduced matters to the case already proven. �

Remark 4.3. The affine normal lines considered in this paper are closely related to the
affine normal field which was discussed, e.g., by Nomizu and Sasaki [20, Section II.3].
The affine normal field is a certain map ξ : M → Rn+1 that is well defined whenever
M ⊆ Rn+1 is a smooth, connected, locally strongly convex hypersurface. The relationship
between the affine normal field and the affine normal line is simple: for any y ∈ M , the
affine normal field ξy is pointing in the direction of the affine normal line �M (y). Indeed,
using affine invariance, it suffices to verify this in the case where M = GraphL(ψ).
Example 3.3 in [20, Section II.3] demonstrates that when M = GraphL(ψ), for any
x ∈ L and y = (x, ψ(x)) ∈ M ,

(4) ξy =
(det∇2ψ)1/(n+2)

n+ 2
·
(
−(∇2ψ)−1∇Λ, n+ 2−

〈
(∇2ψ)−1∇Λ,∇ψ

〉)
∈ Rn × R,

where Λ = log det∇2ψ and all expressions involving ψ and Λ are evaluated at the point x.
The vector in (4) is proportional to the vector described in Lemma 4.2, and hence ξy is
pointing in the direction of the line �M (y).

Proposition 4.4. Let M,L and ψ be as in Lemma 4.2. Denote ϕ = ψ∗ and Ω =
∇ψ(L) = {∇ψ(x) ; x ∈ L}. Then the following statements hold.

(i) The set Ω ⊆ Rn is open and the function ϕ is smooth in Ω.
(ii) The hypersurface M is affinely spherical with center at the origin if and only if

there exists C ∈ R \ {0} such that

(5) ϕn+2 · det∇2ϕ = C in the entire set Ω.

Proof. The function ψ is smooth and strongly convex in the open, convex set L. By
strong convexity, the smooth map ∇ψ : L → Ω is one-to-one (see, e.g., [26, Theo-
rem 26.5]). Moreover, the differential of the smooth map ∇ψ : L → Ω is nonsingular,
and by the inverse function theorem from calculus, the set Ω = ∇ψ(L) is open and the
map ∇ψ : L → Ω is a diffeomorphism. According to [26, Corollary 23.5.1], the inverse of
the map ∇ψ is the smooth map ∇ϕ : Ω → L, and hence

(6) ∇2ϕ = (∇2ψ)−1 ◦ ∇ϕ.

Thus (i) is proven. We move on to the proof of (ii). Assume first that M is affinely
spherical with center at the origin. Then for any x ∈ L, the vector in (3) is proportional
to (x, ψ(x)). That is, for any x ∈ L,

(7) −ψ(x)(∇2ψ)−1∇(log det∇2ψ) =
[
n+ 2−

〈
(∇2ψ)−1∇(log det∇2ψ),∇ψ

〉]
x.

By using the shorter Einstein notation, we may repharse (7) as follows: for x ∈ L and
i = 1, . . . , n,

(8) −ψψik
k =

(
n+ 2− ψjk

k ψj

)
xi.
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Let us briefly explain this standard notation. We denote x = (x1, . . . , xn) ∈ Rn,
∇2ψ(x) = (ψij(x))i,j=1,...,n and (∇2ψ)−1(x) = (ψij(x))i,j=1,...,n. We abbreviate ψk

ij =∑n
�=1 ψ

�kψij� and ψij
k =

∑n
�,m=1 ψ

i�ψjmψ�mk, where ψijk = ∂ijkψ. The sums are usually
implicit in the Einstein notation: an index which appears twice in an expression, once as
a superscript and once as a subscript, is being summed upon from 1 to n. The Legendre
transform fits well with the Einstein notation, thanks to identities such as

ψijk(x) = −ϕijk(y) and ψij
k (x) = −ϕk

ij(y),

where expressions involving ψ are evaluated at the point x ∈ L and expressions involving
ϕ are evaluated at the point y = ∇ψ(x) ∈ Ω. Here, (∇2ϕ)−1(y) = (ϕij(y))i,j=1,...,n and
ϕk
ij =

∑
� ϕ

�kϕij�. We may thus change the variables y = ∇ψ(x), and translate (8) to
the equation: for any y ∈ Ω and i = 1, . . . , n,

(9)
(
yjϕj − ϕ

)
ϕk
ik =

(
n+ 2 + ϕk

jky
j
)
ϕi.

The function ψ is smooth and strongly convex, hence the set {x ∈ L;ψ(x) �= 0} is an
open, dense set in L. Denote U = {y ∈ Ω ; ψ(∇ϕ(y)) �= 0}, an open, dense set in Ω. For
any y ∈ U we may define

A(y) =
n+ 2 + ϕk

jky
j(∑

� y
�ϕ�

)
− ϕ

.

Thus ϕk
ik = Aϕi throughout the set U , according to (9). Moreover, the following holds

in the set U , for i = 1, . . . , n:

(10) yjϕjϕ
k
ik = Ayjϕjϕi = ϕk

jky
jϕi.

From (9) and (10), we have

(11) −ϕϕk
ik = (n+ 2)ϕi.

The validity of (11) in the dense set U ⊆ Ω implies by continuity that (11) holds true in
the entire open set Ω. By multiplying (11) by ϕn+1 · det∇2ϕ we obtain that in all of Ω,

(12) ∇(ϕn+2 · det∇2ϕ) = 0.

The set Ω is connected, being the image of the connected set L under a smooth map.
Hence det∇2ϕ · ϕn+2 ≡ C in Ω. This constant C cannot be zero according to (6),
because det∇2ϕ never vanishes in Ω and ϕ is not the zero function. This completes
the verification of (5). We have thus proven one direction of (ii). However, all of our
manipulations in this proof are reversible: The validity of (5) implies the validity of (11),
which in turn leads to (9) and eventually to (7). Hence (5) implies that M is affinely
spherical with center at the origin. �

The following proposition is close to the original definition of affinely-spherical hyper-
surfaces given by Tzitzéica [24, 25].

Proposition 4.5. Let M ⊂ Rn+1 be a smooth, connected, locally strongly convex hy-
persurface. For y ∈ M write Ky > 0 for the Gauss curvature of M at the point y and
denote

ρy = 〈y,Ny〉
where Ny ∈ Rn+1 is the Euclidean unit normal to M at the point y, pointing to the
concave side of M . Then M is affinely spherical with center at the origin if and only if
there exists C ∈ R \ {0} such that ρn+2

y /Ky = C for all y ∈ M .
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Proof. See Nomizu and Sasaki [20, Section II.5] for a proof of this proposition, or alter-
natively argue as follows. Since M is connected, it suffices to show that M is affinely
spherical with center at the origin if and only if the function y �→ ρn+2

y /Ky is locally
constant in M and it never vanishes.

Fix y0 ∈ M . By applying a rotation in Rn+1, we may assume that in a neighborhood
of y0, the hypersurface M looks like the graph of a strongly-convex function. That is,
we may assume that there exist an open set U ⊆ Rn+1 with y0 ∈ U , a convex, open set
L ⊆ Rn and a proper, convex function ψ : Rn → R ∪ {+∞} which is finite, smooth and
strongly convex in L, such that

M ∩ U = GraphL(ψ).

A standard exercise in differential geometry is to show that for any x ∈ L, at the point
y = (x, ψ(x)),

(13) ρy =
〈x,∇ψ(x)〉 − ψ(x)√

1 + |∇ψ(x)|2
,

and

(14) Ky = det∇2ψ(x) · (1 + |∇ψ(x)|2)−n/2−1.

Denote ϕ = ψ∗. From (13) and (14) we obtain

ρn+2
y

Ky
=

(〈x,∇ψ(x)〉 − ψ(x))
n+2

det∇2ψ(x)
= ϕn+2(z) · det∇2ϕ(z)

where z = ∇ψ(x). The desired conclusion now follows from Proposition 4.4. �

§5. The polar affinely spherical hypersurface

In this section we prove Theorem 1.2. We begin with a variant of a construction in con-
vexity considered by Artstein-Avidan and Milman [2] and by Rockafellar [26, Section 15].
Fix a dimension n, and denote

H+ = {(x, t) ∈ Rn × R; t > 0} ⊆ Rn+1,

cH− = {(x, t) ∈ Rn × R; t < 0} ⊆ Rn+1.

Consider the fractional-linear transformations I+ : H+ → H− and I− : H− → H+ defined
via

I+(x, t) =

(
x

t
,−1

t

)
, I−(y, s) =

(
−y

s
,−1

s

)
.

Then I+ is a diffeomorphism whose inverse is I−. A subset V ⊆ H± is a relative half-space
if V = A ∩H± where A ⊆ Rn+1 takes the form

A = {(x, t) ∈ Rn × R; 〈x, θ〉+ bt+ c ≥ 0} ⊆ Rn+1

for some θ ∈ Rn, b, c ∈ R. Note that a relative half-space V ⊆ H± is a relatively-closed
subset of H±. We say that a relative half-space V ⊆ H± is proper if V and H± \ V are
nonempty.

Lemma 5.1. The maps I+ and I− transform relative half-spaces to relative half-spaces.

Proof. Let θ ∈ Rn, b, c ∈ R. Then for any subset V ⊆ H+,

V =
{
(x, t) ∈ H+; 〈x, θ〉+ bt+ c ≥ 0

}
⇐⇒ I+(V ) =

{
(y, s) ∈ H−; 〈y, θ〉 − cs+ b ≥ 0

}
.

Hence V ⊆ H+ is a relative half-space if and only if I+(V ) ⊆ H− is a relative half-
space. �
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Any relatively closed subset A ⊆ H± which is convex is the intersection of a family of
relative half-spaces in H±. From Lemma 5.1 we conclude the following.

Corollary 5.2. The maps I+ and I− transform relatively-closed, convex sets to relati-
vely-closed, convex sets.

Similarly to Rockafellar [26, Section 15], we say that the set I±(A) is the obverse of
the set A ⊆ H±. See Figure 2 for an example of a convex set and its obverse. The polar
body of a convex subset S ⊆ Rd is defined via

S◦ =
{
x ∈ Rd ; ∀y ∈ S, 〈x, y〉 ≤ 1

}
.

The set S◦ is always convex, closed and contains the origin. If S ⊆ Rd is convex, closed
and contains the origin, then (S◦)◦ = S. For a subset S ⊆ Rn and for a function
F : S → R ∪ {+∞} we write

EpigraphS(F ) = {(x, t) ∈ S × R ; F (x) ≤ t} ⊆ Rn+1.

When S = Rn we abbreviate Epigraph(F ) = Epigraph
Rn(F ). Note that a function

F : Rn → R ∪ {+∞} is proper and convex if and only if Epigraph(F ) is convex, closed
and nonempty. The obverse operation interchanges between the Legendre transform and
the polarity transform, see the next statement.

Proposition 5.3. Let ϕ : Rn → (0,+∞] be a proper, convex function and denote ψ = ϕ∗.
Then,

(1) I+(Epigraph(ϕ)) = Epigraph(ψ)◦ ∩H−.

Moreover, if ψ(0) < ∞, then Epigraph(ψ)◦ \ H− = {(x, 0) ; x ∈ Dom(ψ)◦} ⊆ Rn × R.

Proof. Denote A = Epigraph(ϕ) and note that A ⊆ H+ because ϕ is positive. For any
(y,−s) ∈ H−,

(2) (y,−s) ∈ I+(A) ⇐⇒ (y/s, 1/s) ∈ A ⇐⇒ ϕ(y/s) ≤ 1/s.

Recall that (sψ)∗(y) = sϕ(y/s) for any y ∈ Rn and s > 0. By (2), for any (y,−s) ∈ H−,

(y,−s) ∈ I+(A) ⇐⇒ (sψ)∗(y) ≤ 1 ⇐⇒ ∀x ∈ Dom(ψ), 〈x, y〉 − sψ(x) ≤ 1.

Consequently,

I+(A) = {(y, s) ∈ Rn × R ; s < 0, 〈x, y〉+ sψ(y) ≤ 1 for all x ∈ Dom(ψ)}
= {(y, s) ∈ Rn × R ; s < 0, 〈x, y〉+ ts ≤ 1 for all (x, t) ∈ Epigraph(ψ)} .

(3)

Hence I+(A) = Epigraph(ψ)◦ ∩ H−, and (1) is proven. Next, assume that ψ(0) < ∞.
Then Epigraph(ψ) contains all points of the form (0, t) for t ≥ ψ(0). Therefore, for any
(y, s) ∈ Epigraph(ψ)◦,

〈0, y〉+ ts ≤ 1 for all t ≥ ψ(0),

and hence s ≤ 0. We conclude that Epigraph(ψ)◦\H− ⊆ {(y, 0) ; y ∈ Rn}. Consequently,
Epigraph(ψ)◦ \ H−

= {(y, 0) ; y ∈ Rn, 〈x, y〉+ t · 0 ≤ 1 for all (x, t) ∈ Epigraph(ψ)}
= {(y, 0) ; y ∈ Rn, 〈x, y〉 ≤ 1 for all x ∈ Dom(ψ)}
= {(y, 0) ; y ∈ Dom(ψ)◦}. �

For a subset A ⊆ H± ⊆ Rn+1 we write A ⊆ Rn+1 and ∂A ⊆ Rn+1 for the usual closure
and boundary of the set A, viewed as a subset of Rn+1. Similarly, when A ⊆ H± ⊆ Rn+1

is convex, we write A◦ for its polar body, where again A is viewed as a convex subset
of Rn+1. When A ⊆ H± is relatively closed, its closure A is contained in H±, and
A ∩H± = A. Note that the relative boundary of a subset A ⊆ H± equals (∂A) ∩H±.



AFFINE HEMISPHERES OF ELLIPTIC TYPE 131

Figure 2. A semicircle and its obverse, which is a branch of a hyperbola.

Lemma 5.4. The two diffeomorphisms I± transform smooth, connected, locally strongly
convex hypersurfaces to smooth, connected, locally strongly convex hypersurfaces.

Proof. Let M ⊆ H± be a smooth, connected hypersurface. A locally supporting relative
half-space at the point y ∈ M is a proper, relative half-space A ⊆ H± with y ∈ ∂A such
that A ⊇ M ∩ U for some open neighborhood U ⊆ H± of the point y.

A smooth, connected hypersurface M ⊆ H± is locally strongly convex if and only if
for any y ∈ M there is a unique locally supporting relative half-space at the point y that
varies smoothly in y ∈ M and without critical points.

The diffeomorphisms I± induce a diffeomorphism between the space of proper, relative
half-spaces of H+ and the space of proper, relative half-spaces of H−, as we see from the
proof of Lemma 5.1. Thus, if M ⊆ H± is a smooth, connected, locally strongly convex
hypersurface, then the same is true for I±(M). The lemma is thus proven. �

We say that a subset A ⊆ H± is bounded from below if there exists (x0, t0) ∈ H±

such that

t > t0 for all (x, t) ∈ A.

It is easy to verify that if A ⊆ H± is bounded from below, then its obverse is also bounded
from below.

Lemma 5.5. Let L ⊆ Rn be a bounded, open, convex set containing the origin. Let
B ⊆ H− be a relatively closed, convex set that is bounded from below. Assume that
the set (∂B) ∩ H− is a smooth, connected, locally strongly convex hypersurface, while
(∂B) \ H− = {(x, 0) ; x ∈ L◦}.

Then there exists a proper, convex function ψ : Rn → R ∪ {+∞} with Dom(ψ) = L
that is smooth and strongly convex in L, with ∇ψ(L) = Rn, Rψ(0) < 0 and B =
Epigraph(ψ)◦. Moreover, I−(B) = Epigraph(ϕ) where ϕ = ψ∗.

Proof. Since B ⊆ H−, for any (x, t) ∈ Rn × R and r > 0,

(x, t) ∈ B◦ =⇒ (x, t+ r) ∈ B◦.

Therefore, the closed set B◦ satisfies B◦ = Epigraph(ψ) where ψ : Rn → R ∪ {+∞} is
defined via

ψ(x) = inf{t ∈ R ; (x, t) ∈ B◦}.
Here, inf ∅ = +∞. Since B◦ ⊆ Rn+1 is closed, convex and it contains the origin,
the function ψ is necessarily proper and convex. The set B is closed, convex and it

contains the origin, as follows from our assumptions. Since B
◦
= B◦ = Epigraph(ψ)

while B ⊆ H− is relatively closed,

(4) B = Epigraph(ψ)◦ and B = B ∩H− = Epigraph(ψ)◦ ∩H−.
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The set B ⊆ H− is bounded from below, hence there exists t0 < 0 such that t > t0
for all (x, t) ∈ B. Therefore (0, 1/t0) ∈ B◦ and thus ψ(0) < 0. Denote ϕ = ψ∗. Then
ϕ : Rn → (0,+∞] is proper and convex. By (4) and Proposition 5.3,

(5) A := I−(B) = I−(Epigraph(ψ)◦ ∩H−) = Epigraph(ϕ)

and moreover,

(6) (∂B) \ H− = B \ H− = Epigraph(ψ)◦ \ H− = {(x, 0) ; x ∈ Dom(ψ)◦}.
However, (∂B) \H− = {(x, 0) ; x ∈ L◦} according to our assumptions. From (6) we thus

deduce that L◦ = Dom(ψ)◦ and L = Dom(ψ). Since Dom(ψ) ⊆ Rn is bounded and
ϕ = ψ∗, necessarily

(7) Dom(ϕ) = Rn

by [26, Corollary 13.3.3]. The map I− is a homeomorphism, and hence it transforms
the relative boundary of B ⊆ H−, which is the set (∂B) ∩H−, to the relative boundary
of A ⊆ H+, which is the set (∂A) ∩ H+. Since the relative boundary (∂B) ∩ H− is a
smooth, connected, locally strongly convex hypersurface, Lemma 5.4 implies that also
the hypersurface

(∂A) ∩H+ = I−((∂B) ∩H−)

is smooth, connected and locally strongly convex. Since inf ϕ = −ψ(0) > 0, the relations
(5) and (7) imply that

(∂A) ∩H+ = ∂A = Graph
Rn(ϕ).

Hence Graph
Rn(ϕ) is a smooth, connected, locally strongly convex hypersurface. Conse-

quently ϕ : Rn → R is smooth and strongly convex. This implies that the set ∇ϕ(Rn) is
the interior of Dom(ϕ∗) (see, e.g., [26, Theorem 26.5] or [17, Section 1.2]). We conclude
that ∇ϕ(Rn) = L, and [26, Theorem 26.5] shows that the function ψ = ϕ∗ is smooth
and strongly convex in L with ∇ψ(L) = Rn. We have thus verified all of the conclusions
of the lemma. �

There are two convex epigraphs that are associated with the convex set B ⊆ H− from
Lemma 5.5: the obverse of B is Epigraph(ϕ) while the polar of B is Epigraph(ψ). We
may think about this triplet of convex sets as three different “coordinate systems” for
describing the affine hemisphere equation. We will shortly see that ∂B ∩H− is an affine
hemisphere centered at the origin if and only if EpigraphL(ψ) is affinely spherical with
center at the origin, which happens if and only if ϕ satisfies det∇2ϕ = C/ϕn+2. Recall
that for a smooth hypersurface M ⊆ Rn+1 and y ∈ M , we view the tangent space TyM
as an n-dimensional linear subspace of Rn+1.

Definition 5.6. Let M ⊆ Rn+1 be a smooth, connected, locally strongly convex hyper-
surface. Assume that y �∈ TyM for all y ∈ M . For y ∈ M define the vector νy ∈ Rn+1

via the requirements that
〈νy, y〉 = 1, νy ⊥ TyM.

We refer to ν : M → Rn+1 as the “polarity map”. We define the “polar hypersurface”
M∗ via

M∗ := ν(M) = {νy ; y ∈ M} .

What is the relationship between polar hypersurfaces and polar bodies? If S ⊆ Rn+1 is
a convex set and if M ⊆ ∂S is a smooth, connected, locally strongly convex hypersurface
for which the polarity map is well defined, then M∗ ⊆ ∂S◦. Thus, Definition 5.6 provides
a local version of the theory of convex duality: a piece of the boundary of S is polar to
a certain piece of the boundary of S◦.
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Suppose that M ⊆ Rn+1 is a smooth, connected, locally strongly convex hypersurface
such that y �∈ TyM for all y ∈ M . It is well known thatM∗ is always a smooth, connected,
locally strongly convex hypersurface such that y �∈ TyM

∗ for all y ∈ M∗. Furthermore,
the polarity map ν : M → M∗ is a diffeomorphism, and its inverse is the polarity map
associated with M∗. In particular, (M∗)∗ = M .

Lemma 5.7. Let L ⊆ Rn be an open, bounded, convex set containing the origin. Let
ψ : Rn → R ∪ {+∞} be a proper, convex function with ψ(0) < 0 such that L = Dom(ψ).
Assume that ψ is smooth and strongly convex in L with ∇ψ(L) = Rn. Denote

M = GraphL(ψ) and K̃ = Epigraph(ψ)◦.

Then M∗ is well defined, the convex set K̃ is compact with dim(K̃) = (n+ 1), and

(8) (∂K̃) ∩H− = M∗ while (∂K̃) \ H− = {(x, 0) ; x ∈ L◦} .

Proof. Define ϕ = ψ∗. Since ∇ψ(L) = Rn, necessarily Dom(ϕ) = Rn by [26, Corol-
lary 13.3.3]. Since ψ(0) < 0, the function ϕ : Rn → R is positive and convex. Denote

A = Epigraph(ϕ) ⊆ H+ and B = K̃ ∩H−. By Proposition 5.3,

(9) B = K̃ ∩H− = Epigraph(ψ)◦ ∩H− = I+(Epigraph(ϕ)) = I+(A).

Since ϕ : Rn → R is convex and positive, we may assert that ∂A ∩ H+ = ∂A =
Graph

Rn(ϕ). Consequently

(10) ∂K̃ ∩H− = ∂B ∩H− = I+(∂A ∩H+) = I+(Graph
Rn(ϕ)).

Since ψ is smooth in L, the identity ψ(x) + ϕ(∇ψ(x)) = 〈x,∇ψ(x)〉 is fulfilled for all
x ∈ L. The fact that ∇ψ(L) = Rn thus implies

(11) Graph
Rn(ϕ) = {(∇ψ(x), 〈x,∇ψ(x)〉 − ψ(x)) ∈ Rn × R ; x ∈ L} .

Note that 〈x,∇ψ(x)〉 − ψ(x) = ϕ(∇ψ(x)) > 0 for all x ∈ L, and hence νy is well defined
indeed. From Definition 5.6, it follows that for x ∈ L and y = (x, ψ(x)) ∈ GraphL(ψ),

(12) νy =
(∇ψ(x),−1)

〈x,∇ψ(x)〉 − ψ(x)
= I+ {(∇ψ(x), 〈x,∇ψ(x)〉 − ψ(x))} .

Since M = GraphL(ψ) and M∗ = ν(M), by (10), (11) and (12),

(13) M∗ = ν(GraphL(ψ)) = I+(Graph
Rn(ϕ)) = ∂K̃ ∩H−.

Proposition 5.3 shows that K̃ = Epigraph(ψ)◦ ⊆ H−. In fact, according to Proposi-
tion 5.3,

(14) (∂K̃) \ H− = K̃ \ H− = {(x, 0) ; x ∈ Dom(ψ)◦} = {(x, 0) ; x ∈ L◦}.
Now (8) follows from (13) and (14). From (8) it follows that dim(K̃) = n+1, because the

convex set K̃ affinely spans the hyperplane ∂H− while it also contains points outside this
hyperplane. Moreover, since 0 ∈ L and ψ(0) < 0, the convex set Epigraph(ψ) contains

a neighborhood of the origin in Rn+1. Therefore the closed set K̃ = Epigraph(ψ)◦ is
bounded, and hence it is compact. �

Recall from Proposition 4.5 that Ny is the Euclidean unit normal to M at the point
y that is pointing to the concave side of M . Recall also that we denote ρy = 〈Ny, y〉. It
follows from Definition 5.6 that if ρy �= 0 for all y ∈ M , then the polarity map is well
defined, and

(15) νy =
Ny

ρy
for all y ∈ M.
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The map N : M → Sn is the Gauss map associated with M , and we see that the polarity
map is proportional to the Gauss map. We define the cone measure on a smooth hyper-
surface M ⊆ Rn+1 to be the measure μM supported on M whose density with respect to
the surface area measure on M is the function y �→ |ρy|/(n+1). The reason for the term
“cone measure” is that for any Borel subset S ⊆ M that does not contain two distinct
points on the same ray from the origin,

μM (S) = Voln+1 ({tx; 0 ≤ t ≤ 1, x ∈ S}) .

Proposition 5.8. Let M ⊆ Rn+1 be a smooth, connected, locally strongly convex hyper-
surface. Then M is affinely spherical with center at the origin if and only if the following
is true: the polarity map ν : M → M∗ is well defined, and it pushes forward the cone
measure μM to a measure proportional to the cone measure μM∗ .

Proof. If M is affinely spherical with center at the origin, then the polarity map of M is
well defined, because ρy �= 0 for all y ∈ M according to Proposition 4.5. For y ∈ M let
Sy : TyM → TyM be the shape operator associated with the Euclidean unit normal N .
Then det(Sy) is the Gauss curvature Ky > 0. For any vector field X tangent to M we
have

(16) DXν = DX (N/ρ) =
S(X)

ρ
− DXρ

ρ2
N,

where DXν ∈ Rn+1 is the derivative of ν in the direction of X. Write Dν : TM → TM∗

for the differential of the smooth polarity map ν. Then for any y ∈ M , the map (Dν)y
is a linear map from the tangent space TyM = ν⊥y to the tangent space Tνy

M∗ = y⊥.

Here, y⊥ is the hyperplane orthogonal to y in Rn+1. From (16), for any y ∈ M and
u ∈ TyM ,

(17) Sy(u) = ρy · Projν⊥
y
((Dν)y(u)) ,

where Projν⊥
y

is the orthogonal projection operator onto ν⊥y in Rn+1. The operator

Projν⊥
y
: y⊥ → ν⊥y distorts n-dimensional volumes by a factor of |〈y, νy〉|/(|y||νy|). The

linear map (Dν)y : ν
⊥
y → y⊥ distorts volumes by a factor of | det(Dν)y|. Hence, by (17),

for any y ∈ M ,

(18) Ky = det(Sy) = |ρy|n · |〈y, νy〉||y| |νy|
· | det(Dν)y| =

| det(Dν)y|
|y| |νy|n+1

,

where we have used (15) in the last passage. In fact, according to (15), the cone measure
μM has density y �→ 1/((n + 1)|νy|) with respect to the surface area measure on M .
Denote by θ the measure on M whose density with respect to the surface area measure
is Ky|νy|n+1/(n+ 1).

Recalling that the polarity map of M∗ is inverse to that of M , we deduce from (18)
that ν pushes forward θ to the cone measure μM∗ . Consequently, ν pushes forward μM

to a measure proportional to μM∗ if and only if θ is proportional to μM , i.e., if and only
if there exists C > 0 such that

(19) Ky|νy|n+1/(n+ 1) = C/((n+ 1)|νy|) for all y ∈ M.

Recall that 1/|νy| = |ρy|, and that ν and ρ are continuous on the connected manifold M .
By Proposition 4.5, the hypersurface M is affinely spherical with center at the origin if
and only if there exists C > 0 such that (19) holds true. This completes the proof. �

Since the polarity map of M∗ is the inverse to the polarity map of M , Proposition 5.8
has the following well-known corollary.



AFFINE HEMISPHERES OF ELLIPTIC TYPE 135

Corollary 5.9. Let M ⊆ Rn+1 be an affinely spherical hypersurface with center at the
origin. Then the polar hypersurface M∗ is well defined, and it is again affinely spherical
with center at the origin.

Theorem 5.10. Let L ⊆ Rn be an open, bounded, convex set containing the origin.
Then the following are equivalent:

(i) the barycenter of L lies at the origin;

(ii) there exists a proper, convex function ψ : Rn → R ∪ {+∞} with Dom(ψ) = L
such that GraphL(ψ) is affinely spherical with center at the origin, and such that
ψ is smooth and strongly convex in L with ∇ψ(L) = Rn and ψ(0) < 0.

Moreover, assuming (i) or (ii), the function ψ from (ii) is uniquely determined up to
multiplication by a positive scalar λ > 0 and addition of a linear function �(x) = 〈x, v〉,
for some v ∈ Rn.

Proof. Assume (i). According to Theorem 3.10, there exists a smooth, positive, convex
function ϕ : Rn → R with ∇ϕ(Rn) = L such that

(20) det∇2ϕ =
C

ϕn+2
in Rn,

for some constant C > 0. Denote ψ = ϕ∗. From [26, Theorem 26.5] we know that

Dom(ψ) = L and that ψ is smooth and strongly convex in L with ∇ψ(L) = Rn. Accord-
ing to Proposition 4.4, equation (20) implies that GraphL(ψ) is affinely spherical with
center at the origin. The infimum of ϕ is attained and is positive because 0 ∈ L. Hence
ψ(0) < 0, and we have verified all conclusions in (ii).

Next, assume (ii) and let us prove (i). Denote ϕ = ψ∗. Since L = Dom(ψ) is a bounded
set, necessarily Dom(ϕ) = Rn by [26, Corollary 13.3.3]. Since ψ is smooth and strongly
convex in L with ∇ψ(L) = Rn and ψ(0) < 0, necessarily ϕ is a positive, smooth, strongly
convex function in Rn with ∇ϕ(Rn) = L. Since GraphL(ψ) is affinely spherical with
center at the origin, Proposition 4.4 shows that (20) holds true. Theorem 3.10 now implies
(i). Moreover, Theorem 3.10 states that ϕ is uniquely determined up to translations and
dilations, implying that ψ is determined up to the transformation described above. �

Let K ⊆ Rn be an n-dimensional, nonempty, bounded, convex set. The Santaló point
of K is a unique point z(K) ∈ Rn such that

Voln((K − z(K))◦) = inf
z∈Rn

Voln(K − z)◦

where K − z = {x − z ; x ∈ K}. The Santaló point of K is well defined and it belongs
to the interior of K, see [22, Section 7.4]. The Santaló point of K satisfies z(K) = 0 if
and only if the barycenter of K◦ is well defined and it lies at the origin. The Santaló
point is affinely invariant: for any invertible, affine transformation T : Rn → Rn we know
that z(T (K)) = T (z(K)). Hence the Santaló point is well defined for any nonempty,
bounded, convex set embedded in some finite-dimensional real linear space.

Proof of the existence part of Theorem 1.2. Applying an affine transformation in Rn+1,
we may assume that the Santaló point of K lies at the origin, and that

K ⊆ {(x, 0); x ∈ Rn}.

Write K1 ⊆ Rn for the interior of the set
{
x ∈ Rn; (x, 0) ∈ K

}
. Then K1 ⊆ Rn is an

open, convex set whose Santaló point lies at the origin. Hence K◦
1 ⊆ Rn is a compact,

convex set containing zero in its interior such that the barycenter of K◦
1 lies at the origin.
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Write L ⊆ Rn for the interior of K◦
1 . From Theorem 5.10 it follows that there exists a

proper, convex function ψ : Rn → R ∪ {+∞} with Dom(ψ) = L such that

M := GraphL(ψ)

is affinely spherical with center at the origin. Moreover, ∇ψ(L) = Rn and ψ(0) < 0.
Denote

K̃ = Epigraph(ψ)◦.

According to Corollary 5.9, the hypersurface M∗ is affinely spherical with center at the

origin. Furthermore, Lemma 5.7 shows that K̃ ⊆ Rn+1 is an (n+1)-dimensional, compact
convex set and

M∗ = (∂K̃) ∩H− while (∂K̃) \ H− = L◦ × {0} = K.

Consequently M∗ ⊆ H− does not intersect the hyperplane ∂H− that contains K, while

∂K̃ = M∗∪K. According to Definition 1.1, the hypersurface M∗ is an affine hemisphere
with anchor K, which is centered at the Santaló point of K. �

Proposition 5.11. Let L ⊆ Rn be a bounded, open, convex set containing the origin. Let
M ⊆ H− be an affine hemisphere with anchor L◦ × {0} ⊆ Rn ×R = Rn+1 and center at
the origin. Then M∗ is well defined, and there exists a function ψ as in Theorem 5.10 (ii)
such that M∗ = GraphL(ψ).

Proof. The hypersurface M ⊆ H− is an affine hemisphere with anchor K = L◦ × {0}
which is centered at the origin. Let K̃ be as in Definition 1.1. Denote B = K̃∩H− which

is a convex, relatively closed subset of H− with B = K̃. The convex set B is bounded

from below in H− because K̃ is compact. Moreover, by Definition 1.1 the set

(21) M = (∂K̃) ∩H− = (∂B) ∩H−

is a smooth, connected, locally strongly convex hypersurface. Additionally, from Defini-
tion 1.1 it follows that

(22) (∂B) \ H− = (∂K̃) \ H− = K = L◦ × {0}.
Thus the relatively closed, convex set B ⊆ H− satisfies all of the requirements of
Lemma 5.5. From the conclusion of Lemma 5.5, there exists a proper, convex function
ψ : Rn → R ∪ {+∞} such that

(23) Epigraph(ψ)◦ = B = K̃

and such that ψ(0) < 0,Dom(ψ) = L while ψ is smooth and strongly convex in L with
∇ψ(L) = Rn. Thanks to (21) and (23), Lemma 5.7 shows that

GraphL(ψ) = M∗.

Since M is affinely spherical with center at the origin, Corollary 5.9 gives that GraphL(ψ)
is also affinely spherical with center at the origin. Hence the function ψ satisfies all of
the conditions of Theorem 5.10 (ii), and the proposition is proven. �

Proof of the uniqueness part of Theorem 1.2. Suppose that M is an affine hemisphere

with anchor K, and let K̃ be as in Definition 1.1. By applying an affine transformation
in Rn+1, we may assume that M is affinely spherical with center at the origin, and that

(24) K ⊆ {(x, 0) ; x ∈ Rn} while K̃ ⊆ H−.

Definition 1.1 implies that the origin belongs to the relative interior of the n-dimensional,
compact, convex set K. Hence there exists a bounded, open, convex set L ⊆ Rn con-
taining the origin such that K = L◦ × {0}. From (24) and Definition 1.1 we conclude
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that M = ∂K̃ ∩H− ⊆ H−. Proposition 5.11 shows that M∗ = GraphL(ψ) for a certain
convex function ψ : Rn → R ∪ {+∞} satisfying the requirements of Theorem 5.10 (ii).

Theorem 5.10 now implies that the barycenter of L lies at the origin, and hence the
affine hemisphere M is centered at the Santaló point of K. According to Theorem 5.10,
the function ψ is uniquely determined by L, up to multiplication by a positive scalar and
addition of a linear function. It thus follows that the affine hemisphere M = GraphL(ψ)

∗

with anchor L◦×{0} is uniquely determined by L, up to a linear transformation. There-
fore M is determined by K up to an affine transformation, and the proof is complete. �

Remark 5.12. Let M be an affine hemisphere in Rn+1 with center at the origin and

anchor K ⊆ Rn × {0}. Let K̃ ⊆ Rn × [0,∞) be the convex body from Definition 1.1, so

that ∂K̃ = M ∪K. For (x, t) ∈ Rn × [0,∞) set

‖(x, t)‖
˜K = inf

{
λ > 0 : (x, t)/λ ∈ K̃

}
,

the Minkowski functional of K̃. Denote also F (x, t) = ‖(x, t)‖2
˜K
/2. Since the origin

belongs to the relative interior of K, the function F is a finite, 2-homogenous, convex
function in the half-space (x, t) ∈ Rn × [0,∞). Note that the closure of the affine
hemisphere M is a level set of the function F . It was noted by Bo Berndtsson that the
function F satisfies

(25)

{
det∇2F (x, t) = C for (x, t) ∈ Rn × (0,∞),

F (x, 0) = ‖x‖2K/2 for x ∈ Rn,

where C > 0 is a positive constant and ‖x‖K = inf{λ > 0 ; x/λ ∈ K} is the Minkowski
functional of K. Thus F solves the parabolic affine sphere equation det∇2F ≡ Const in
a half-space, with boundary values that are 2-homogenous and convex. In order to prove
the equation in (25), we argue as follows. The map ∇F restricted to M is precisely the
polarity map of the affine hemisphere M . Since ∇F is 1-homogenous, for any measurable
subset A ⊆ M and 0 < α < β,

(26) {∇F (ty); y ∈ A, α < t < β} = {tz; z ∈ ν(A), α < t < β}
where ν : M → M∗ is the polarity map associated with M . Proposition 5.8 states that
ν pushes forward the cone volume measure on M to a constant multiple of the cone
volume measure on M∗. It thus follows from (26) that ∇F pushes forward the Lebesgue

measure on K̃ to a constant multiple of the Lebesgue measure on {ty ; y ∈ M∗, t ∈ [0, 1]}.
Therefore the Jacobian of the map y �→ ∇F (y) has a constant determinant, and (25) is
proved.

Added in proofs. An STL file for 3D-printing an affine hemisphere with a square base,
courtesy of Quentin Merigot and Filippo Santambrogio , is available here:
http://www.weizmann.ac.il/math/klartag/sites/math/klartag/files/uploads/

square affine hemisphere/stl.
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[24] G. Tzitzéica, Sur une nouvelle classe de surfaces, Rend. Circ. Mat. Palermo 25 (1908), no. 1,
180–187.

[25] , Sur une nouvelle classe de surfaces, 2éme partie, Rend. Circ. Mat. Palermo 28 (1909),
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