Remote Access St. Petersburg Mathematical Journal

St. Petersburg Mathematical Journal

ISSN 1547-7371(online) ISSN 1061-0022(print)

Request Permissions   Purchase Content 
 
 

 

``Irrational'' constructions in Convex Geometry


Authors: V. Milman and L. Rotem
Original publication: Algebra i Analiz, tom 29 (2017), nomer 1.
Journal: St. Petersburg Math. J. 29 (2018), 165-175
MSC (2010): Primary 52A20
DOI: https://doi.org/10.1090/spmj/1487
Published electronically: December 27, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Several ways to define various ``irrational'' functions of convex bodies, like the geometric mean or power functions, are discussed.


References [Enhancements On Off] (What's this?)

  • 1. S. Artstein-Avidan and V. Milman, The concept of duality for measure projections of convex bodies. J. Funct. Anal. 254 (2008), no. 10, 2648-2666. MR 2406688
  • 2. -, The concept of duality in convex analysis, and the characterization of the Legendre transform, Ann. of Math.(2) 169 (2009), no. 2, 661-674. MR 2480615
  • 3. E. Asplund, Averaged norms, Israel J. Math. 5 (1967), no. 4, 227-233. MR 0222610
  • 4. R. Bhatia, Matrix analysis, Grad. Texts in Math., vol. 169, Springer-Verlag, New York, 1997. MR 1477662
  • 5. K. J. Böröczky, E. Lutwak, Deane Yang, Gaoyong Zhang, The log-Brunn-Minkowski inequality, Adv. Math., 231 (2012), no. 4, 1974-1997. MR 2964630
  • 6. K. J. Böröczky and R. Schneider, A characterization of the duality mapping for convex bodies, Geom. Funct. Anal. 18 (2008), no. 3, 657-667. MR 2438994
  • 7. D. Cordero-Erausquin and B. Klartag, Interpolations, convexity and geometric inequalities. Geometric aspects of functional analysis, Israel Seminar 2006-2010, Lecture Notes in Math., vol. 2050, Springer, Berlin-Heidelberg, 2012, pp. 151-168. MR 2985131
  • 8. V. P. Fedotov, Geometric mean of convex sets, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 45 (1974), 113-116; English transl., J. Soviet Math. 10 (1978), no. 3, 488-491. MR 0370364
  • 9. W. J. Firey, $ p$-means of convex bodies, Math. Scand. 10 (1962), 17-24. MR 0141003
  • 10. P. M. Gruber, The endomorphisms of the lattice of norms in finite dimensions, Abh. Math. Sem. Univ. Hamburg 62 (1992), no. 1, 179-189. MR 1182848
  • 11. J. Lawson and Y. Lim, The geometric mean, matrices, metrics, and more, Amer. Math. Monthly 108 (2001), no. 9, 797-812. MR 1864051
  • 12. E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131-150. MR 1231704
  • 13. -, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244-294. MR 1378681
  • 14. V. Milman and L. Rotem, Non-standard constructions in convex geometry; geometric means of convex bodies, in: E. Carlen, M. Madiman, and E. Werner (eds), Convexity and Concentration, IMA Vol. Math. Appl., vol. 161 (2017), Springer, New Yark, N.Y. http://doi.org/ 10.1007/978-1-4939-7005-6
  • 15. I. Molchanov, Continued fractions built from convex sets and convex functions, Comm. Contemp. Math. 17 (2015), no. 5, 1550003. MR 3404746
  • 16. D. J. Newman, A simplified version of the fast algorithms of Brent and Salamin, Math. Comp. 44 (1985), no. 169, 207-210. MR 771042
  • 17. W. Pusz and S. L. Woronowicz, Functional calculus for sesquilinear forms and the purification map, Rep. Math. Phys. 8 (1975), no. 2, 159-170. MR 0420302
  • 18. L. Rotem, Banach limit in convexity and geometric means for convex bodies, Announc. Math. Sci. 23 (2016), 41-51. MR 3591943
  • 19. -, Algebraically inspired results on convex functions and bodies, Comm. Contemp. Math. 18 (2016), no. 6, 1650027. MR 3547108
  • 20. R. Schneider, Convex bodies: the Brunn-Minkowski theory, 2nd. ed. Encyclopedia Math. Appl., vol. 151, Cambridge Univ. Press, Cambridge, 2014. MR 3155183
  • 21. S. Semmes, Interpolation of Banach spaces, differential geometry and differential equations, Rev. Mat. Iberoam. 4 (1988), no. 1, 155-176. MR 1009123

Similar Articles

Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 52A20

Retrieve articles in all journals with MSC (2010): 52A20


Additional Information

V. Milman
Affiliation: Tel Aviv University PO Box 39040 Ramat-Aviv 69978 Israel
Email: milman@post.tau.ac.il

L. Rotem
Affiliation: University of Minnesota 206 Church St. SE Minneapolis, MN 55455 USA
Email: lrotem@umn.edu

DOI: https://doi.org/10.1090/spmj/1487
Keywords: Convex body, Minkowski sum, support function, ellipsoid, polar body, polarity map
Received by editor(s): October 3, 2016
Published electronically: December 27, 2017
Additional Notes: Research supported in part by ISF grant 826/13 and BSF grant 2012111
Dedicated: Dedicated to Yu. Borago on the occasion of his 80th birthday
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society