Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Homogenization of the Dirichlet problem for higher-order elliptic equations with periodic coefficients
HTML articles powered by AMS MathViewer

by T. A. Suslina
Translated by: T. A. Suslina
St. Petersburg Math. J. 29 (2018), 325-362
DOI: https://doi.org/10.1090/spmj/1496
Published electronically: March 12, 2018

Abstract:

Let ${\mathcal O} \subset \mathbb {R}^d$ be a bounded domain of class $C^{2p}$. The object under study is a selfadjoint strongly elliptic operator $A_{D,\varepsilon }$ of order $2p$, $p\geq 2$, in $L_2({\mathcal O};\mathbb {C}^n)$, given by the expression $b(\mathbf D)^* g(\mathbf x/\varepsilon ) b(\mathbf D)$, $\varepsilon >0$, with the Dirichlet boundary conditions. Here $g(\mathbf x)$ is a bounded and positive definite $(m\times m)$-matrix-valued function in $\mathbb {R}^d$, periodic with respect to some lattice; $b(\mathbb {D})=\sum _{|\alpha |=p} b_\alpha \mathbf {D}^\alpha$ is a differential operator of order $p$ with constant coefficients; and the $b_\alpha$ are constant $(m\times n)$-matrices. It is assumed that $m\geq n$ and the symbol $b({\boldsymbol \xi })$ has maximal rank. Approximations are found for the resolvent $(A_{D,\varepsilon } - \zeta I)^{-1}$ in the $L_2({\mathcal O};\mathbb {C}^n)$-operator norm and in the norm of operators acting from $L_2({\mathcal O};\mathbb {C}^n)$ to $H^p({\mathcal O};\mathbb {C}^n)$, with error estimates depending on $\varepsilon$ and $\zeta$.
References
  • N. S. Bakhvalov and G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, “Nauka”, Moscow, 1984 (Russian). Matematicheskie zadachi mekhaniki kompozitsionnykh materialov. [Mathematical problems of the mechanics of composite materials]. MR 797571
  • Alain Bensoussan, Jacques-Louis Lions, and George Papanicolaou, Asymptotic analysis for periodic structures, Studies in Mathematics and its Applications, vol. 5, North-Holland Publishing Co., Amsterdam-New York, 1978. MR 503330
  • Michael Birman and Tatyana Suslina, Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics, Systems, approximation, singular integral operators, and related topics (Bordeaux, 2000) Oper. Theory Adv. Appl., vol. 129, Birkhäuser, Basel, 2001, pp. 71–107. MR 1882692
  • M. Sh. Birman and T. A. Suslina, Periodic second-order differential operators. Threshold properties and averaging, Algebra i Analiz 15 (2003), no. 5, 1–108 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 15 (2004), no. 5, 639–714. MR 2068790, DOI 10.1090/S1061-0022-04-00827-1
  • M. Sh. Birman and T. A. Suslina, Averaging of periodic elliptic differential operators taking a corrector into account, Algebra i Analiz 17 (2005), no. 6, 1–104 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 17 (2006), no. 6, 897–973. MR 2202045, DOI 10.1090/S1061-0022-06-00935-6
  • M. Sh. Birman and T. A. Suslina, Averaging of periodic differential operators taking a corrector into account. Approximation of solutions in the Sobolev class $H^2(\Bbb R^d)$, Algebra i Analiz 18 (2006), no. 6, 1–130 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 18 (2007), no. 6, 857–955. MR 2307356, DOI 10.1090/S1061-0022-07-00977-6
  • N. A. Veniaminov, Homogenization of higher-order periodic differential operators, Algebra i Analiz 22 (2010), no. 5, 69–103 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 22 (2011), no. 5, 751–775. MR 2828827, DOI 10.1090/S1061-0022-2011-01166-5
  • Georges Griso, Error estimate and unfolding for periodic homogenization, Asymptot. Anal. 40 (2004), no. 3-4, 269–286. MR 2107633
  • Georges Griso, Interior error estimate for periodic homogenization, Anal. Appl. (Singap.) 4 (2006), no. 1, 61–79. MR 2199793, DOI 10.1142/S021953050600070X
  • V. V. Zhikov, On operator estimates in homogenization theory, Dokl. Akad. Nauk 403 (2005), no. 3, 305–308 (Russian). MR 2164541
  • V. V. Jikov, S. M. Kozlov, and O. A. Oleĭnik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994. Translated from the Russian by G. A. Yosifian [G. A. Iosif′yan]. MR 1329546, DOI 10.1007/978-3-642-84659-5
  • V. V. Zhikov and S. E. Pastukhova, On operator estimates for some problems in homogenization theory, Russ. J. Math. Phys. 12 (2005), no. 4, 515–524. MR 2201316
  • V. V. Zhikov and S. E. Pastukhova, On operator estimates in homogenization theory, Uspekhi Mat. Nauk 71 (2016), no. 3(429), 27–122 (Russian, with Russian summary); English transl., Russian Math. Surveys 71 (2016), no. 3, 417–511. MR 3535364, DOI 10.4213/rm9710
  • Carlos E. Kenig, Fanghua Lin, and Zhongwei Shen, Convergence rates in $L^2$ for elliptic homogenization problems, Arch. Ration. Mech. Anal. 203 (2012), no. 3, 1009–1036. MR 2928140, DOI 10.1007/s00205-011-0469-0
  • V. A. Kondrat′ev and S. D. Èĭdel′man, Boundary-surface conditions in the theory of elliptic boundary value problems, Dokl. Akad. Nauk SSSR 246 (1979), no. 4, 812–815 (Russian). MR 543538
  • A. A. Kukushkin and T. A. Suslina, Homogenization of high-order elliptic operators with periodic coefficients, Algebra i Analiz 28 (2016), no. 1, 89–149 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 28 (2017), no. 1, 65–108. MR 3591067, DOI 10.1090/spmj/1439
  • V. G. Maz′ya and T. O. Shaposhnikova, Mul′tiplikatory v prostranstvakh differentsiruemykh funktsiĭ , Leningrad. Univ., Leningrad, 1986 (Russian). MR 881055
  • Yu. M. Meshkova and T. A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: Two-parametric error estimates, Preprint (2017); arXiv:1702.00550v2.
  • S. E. Pastukhova, Homogenization estimates of operator type for fourth order elliptic equations, Algebra i Analiz 28 (2016), no. 2, 204–226 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 28 (2017), no. 2, 273–289. MR 3593009, DOI 10.1090/spmj/1450
  • Svetlana E. Pastukhova, Estimates in homogenization of higher-order elliptic operators, Appl. Anal. 95 (2016), no. 7, 1449–1466. MR 3499669, DOI 10.1080/00036811.2016.1151495
  • M. A. Pakhnin and T. A. Suslina, Homogenization of the elliptic Dirichlet problem: error estimates in the $(L_2\to H^1)$-norm, Funktsional. Anal. i Prilozhen. 46 (2012), no. 2, 92–96 (Russian); English transl., Funct. Anal. Appl. 46 (2012), no. 2, 155–159. MR 2978064, DOI 10.1007/s10688-012-0022-4
  • M. A. Pakhnin and T. A. Suslina, Operator error estimates for the homogenization of the elliptic Dirichlet problem in a bounded domain, Algebra i Analiz 24 (2012), no. 6, 139–177 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 24 (2013), no. 6, 949–976. MR 3097556, DOI 10.1090/S1061-0022-2013-01274-X
  • V. A. Solonnikov, General boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg. II, Trudy Mat. Inst. Steklov. 92 (1966), 233–297 (Russian). MR 0211071
  • Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • T. A. Suslina, Operator error estimates in $L_2$ for the homogenization of an elliptic Dirichlet problem, Funktsional. Anal. i Prilozhen. 46 (2012), no. 3, 91–96 (Russian); English transl., Funct. Anal. Appl. 46 (2012), no. 3, 234–238. MR 3075045, DOI 10.1007/s10688-012-0031-3
  • T. A. Suslina, Homogenization of the Dirichlet problem for elliptic systems: $L_2$-operator error estimates, Mathematika 59 (2013), no. 2, 463–476. MR 3081781, DOI 10.1112/S0025579312001131
  • Tatiana Suslina, Homogenization of the Neumann problem for elliptic systems with periodic coefficients, SIAM J. Math. Anal. 45 (2013), no. 6, 3453–3493. MR 3131481, DOI 10.1137/120901921
  • T. A. Suslina, Homogenization of elliptic problems depending on a spectral parameter, Funct. Anal. Appl. 48 (2014), no. 4, 309–313. Translation of Funktsional. Anal. i. Prilozhen 48 (2014), no. 4, 88–94. MR 3372745, DOI 10.1007/s10688-014-0076-6
  • T. A. Suslina, Homogenization of elliptic operators with periodic coefficients that depend on the spectral parameter, Algebra i Analiz 27 (2015), no. 4, 87–166 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 27 (2016), no. 4, 651–708. MR 3580194, DOI 10.1090/spmj/1412
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 35B27
  • Retrieve articles in all journals with MSC (2010): 35B27
Bibliographic Information
  • T. A. Suslina
  • Affiliation: St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
  • Email: t.suslina@spbu.ru
  • Received by editor(s): August 24, 2016
  • Published electronically: March 12, 2018
  • Additional Notes: Supported by RFBR (project no. 16-01-00087)

  • Dedicated: To the memory of Vladimir Savel’evich Buslaev
  • © Copyright 2018 American Mathematical Society
  • Journal: St. Petersburg Math. J. 29 (2018), 325-362
  • MSC (2010): Primary 35B27
  • DOI: https://doi.org/10.1090/spmj/1496
  • MathSciNet review: 3660677