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ON THE CHROMATIC NUMBER OF AN INFINITESIMAL

PLANE LAYER

A. YA. KANEL-BELOV, V. A. VORONOV, AND D. D. CHERKASHIN

Abstract. This paper is devoted to a natural generalization of the problem on the
chromatic number of the plane. The chromatic number of the spaces Rn × [0, ε]k is
considered.

It is proved that 5 ≤ χ(R2 × [0, ε]) ≤ 7 and 6 ≤ χ(R2 × [0, ε]2) ≤ 7 for ε > 0
sufficiently small.

Also, some natural questions arising from these considerations are posed.

§1. Introduction

Consider the graph the vertex set of which coincides with the points of the plane
and the edges connect all pairs of points at Euclidean distance of 1. Nelson stated the
problem to determine the chromatic number of this graph (we denote this quantity by
χ(R2)). Then this problem was popularized by M. Gardner, P. Erdős, H. Hadwiger, and
A. Soifer. Now it is known as the Nelson–Hadwiger problem. We are grateful to A. Soifer
for pointing out our historical mistakes.

The following theorem is well known.

Theorem 1.1. 4 ≤ χ(R2) ≤ 7.

These bounds are relatively easy. Unfortunately, no improvements have appeared over
the last 65 years. On the other hand, attempts to solve the initial problem gave birth to
a lot of interesting questions and fruitful results. For a detailed list of references on the
problem see §2.

A natural weakening is in finding points at a distance arbitrary close to 1. In this
case there are such points for any plane 5-coloring [8] (some weaker statements are in [9]
and [11]); this statement is a straightforward corollary to Theorem 9. A more interesting
result is that if the colors are measurable, then an arbitrary 4-coloring produces 1-distant
points [10].

We consider the “almost planar” case, or the case of dimension “2 + ε”. Our result is
that if an arbitrary layer between two parallel planes in R3 is colored in 4 colors, then
there are 1-distant points (Theorem 3.1).

Moreover, we show that in the case of 2 infinitesimal dimensions the same is true for 5
colors. In other words, if the Cartesian product of a plane and an arbitrary small square
is 5-colored, then there are 1-distant points (see Theorem 3.3).

The case of Cartesian product looks much harder and more interesting than the case
of forbidden distance interval (1 − ε, 1 + ε). For instance, we can find 1-distant points
in a layer only for 4 colors. Thereby, the following question arises.
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Question 1.1. Let the Cartesian product of a plane and a segment be colored in 5
colors. Are there 1-distant points?

Another branch of research is the following question.

Question 1.2. Consider an n-coloring of plane. Is there a color containing all possible
distances?

In other words, is there a coloring such that the first color has no distance d1, the
second has no d2 and so on? In the case where di = 1, we have the problem on the
plane’s chromatic number. Surprisingly, the problem is nontrivial even for n = 3, and
there are some examples of colorings for n = 6.

Similar questions arise for layers and almost-distances.

§2. On the chromatic number of spaces

There is a lot of activity around the problem; a lot of results were obtained in several
related settings. In particular, the chromatic numbers of spaces have been studied in
the research group of A. M. Raigorodskii. We mention only a short list of main results.
More detailed information on the Nelson–Hadwiger and related problems can be found
in the following surveys: P. K. Agarwal and J. Pach [20], P. Brass, W. Moser and
J. Pach [5], M. Benda and M. Perles [4], K. B. Chilakamarri [6], V. Klee and S. Wagon [15],
A. M. Raigorodskii [24–28], A. Soifer [32, 33], and L. A. Székely [34].

2.1. On the chromatic number of a plane. We start with some weakenings. If
all the connected components of every color are connected regions bounded by Jordan
curves, then one need at least 6 colors, see D. R. Woodall [35].

K. J. Falconer showed in 1981 that if we demand that the colors be measurable, then
we need at least 5 colors for a proper plane coloring [10]. Surely, the example of 7-coloring
still works (see Figure 1).

Figure 1. A proper coloring of plane in 7 colors. The sides of regular
hexagons have length 1√

7
.

One of the main difficulties is that the answer may depend on set theory axiomatics,
as was shown by Shelah and Soifer [30]. If we assume the axiom of choice, then by
the Erdős–de Bruijn theorem the chromatic number of an infinite graph is realized on a
finite subgraph. But computer simulations give no subgraphs with chromatic number at
least 5, so one can conjecture that the chromatic number of the plane in the standard
axiomatics is equal to 4. If we consider the ZF plus the axiom of dependent choice
instead of ZFC, and in addition demand the Lebesgue measurability of all plane subsets
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in question, then one can repeat the proof of Falconer and the chromatic number lies
between 5 and 7.

The case of a bounded subset of the plane can also be treated, see for example [17].

2.2. The case of an arbitrary metric space. Now we consider several generaliza-
tions. For an arbitrary metric space (X, d) and real number a > 0, define a graph
Ga(X, d) in the following way: its vertex set coincides with the points of the metric
space, and the edges connect all pairs of points at the distance a. We are still interested
in the chromatic number χ(X, d, a) of the graph. Usually the role of (X, d) is played by
Rn or Qn with the Euclidean metrics. We shall restrict ourselves to a = 1. It should be
noted that all the graphs Ga are isomorphic in the real case.

2.2.1. Chromatic numbers of real spaces. The line case is obvious: χ(R) = 2. For n = 2
we have exactly the initial problem on the chromatic number of the plane. In the case
where n = 3, the problem is even harder than the classical Nelson–Hadwiger problem;
the latest bounds are dated this century.

Theorem 2.1.
6 ≤ χ(R3) ≤ 15.

The lower bound is due to O. Nechushtan [19]; the upper bound is due to D. Coul-
son [7].

In asymptotics the following holds true.

Theorem 2.2.
(1.239 . . .+ o(1))

n ≤ χ (Rn) ≤ (3 + o(1))n.

The lower bound belongs to A. M. Raigorodskĭı [23]; the upper bound belongs to
D. Larman and A. Rogers [18]. It should be noted that asymptotical lower bounds were
obtained by a linear algebraic method interesting for its own sake; moreover, J. Kahn and
G. Kalai [14] used these bounds to provide a counterexample to Borsuk’s conjecture [14],
which had been open at the moment for more than 50 years. More information on the
Borsuk conjecture and the linear algebraic method can be found in [26].

2.2.2. Chromatic numbers of rational spaces. The line case is still trivial: χ(Q) = 2.
It is somewhat surprising that the exact value of the chromatic number of Qn is

known not only in dimension 2, but also in dimensions 3 and 4 (see D. R. Woodall [35],
P. D. Johnson [13], and M. Benda–M. Perles [4]).

Theorem 2.3. χ(Q2) = χ(Q3) = 2, χ(Q4) = 4.

The best asymptotic lower bound at this time is due to E. I. Ponomarenko and
A. M. Raigorodskĭı [21, 22], and the best current upper bound belongs to D. Larman
and A. Rogers [18].

Theorem 2.4.
(1.199 . . .+ o(1))n ≤ χ (Qn) ≤ (3 + o(1))n .

We mention that the mixed case R×Q was considered in [2].

2.3. Polychromatic numbers. In the book [12], H. Hadwiger and H. Debrunner (in-
spired by P. Erdős) formulated a natural question on finding the polychromatic number
of the plane, that is the minimal number of colors one needs to construct a plane coloring
such that for every color i there is a distance d such that i has no points at the distance
d. We use the notation χp for this quantity, introduced by A. Soifer in [31]. The best
current bounds were discovered by Raiskĭı and Stechkin in [29]. (Stechkin’s example was
published in the same paper with his permission.)
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Theorem 2.5.
4 ≤ χp ≤ 6.

One can find different proofs of the same bounds in the paper [35] by D. R. Woodall.

§3. Main results

We are interested in the chromatic numbers of metric spaces of the type Kn × [0, ε]k,
where K ∈ {R,Q}, n, k ≥ 1, with the Euclidean metrics. We call such metric spaces
“layers”, and in the case where n = k = 1 we call them “strips”. The main focus of this
paper is on the case of n = 2.

3.1. The chromatic numbers of one-dimensional layers. We start with a simple
observation. The lower bound can be found in [3] and [6], but we prove it for the
completeness of presentation.

Proposition 3.1. Let 0 < h ≤
√

3
4k . Then

χ(R× [0, h]k) = 3.

Let
√

3
4k < h ≤

√
8
9k . Then

χ(R× [0, h]k) = 4.

The upper bound. Let 0 < h ≤
√

3
4k . We color R in 3 colors by iterating monochro-

matic half-intervals of length 1/2 (with periodic colors 1, 2, 3, 1, 2, 3 and so on). Then
to a point of R × [0, h]k we assign the color of its projection to the real line. Then the
diameter of the monochromatic parallelepiped [0; 1

2 ] × [0, h]k is at most 1; if it is equal
to 1, then its ends have different colors.

Similarly, one can properly color the strip in 4 colors if
√

3
4k < h ≤

√
8
9k ; in this case

half-open intervals have length 1/3.

The lower bound. We use a trivial example to show the outline of the proof that will
be used later in dimensions 3 and 4.

Suppose that the strip R× [0, ε] is properly colored in finitely many colors. Let l ∈ N

be such that 1/l = δ ≤ ε2. On the lower boundary R×{0} we choose differently colored
points u = (x, 0), v = (x+δ, 0), at the distance δ apart. Such a choice is possible because
the points (0, 0), (δ, 0), . . . , (1, 0) cannot be all of the same color. Denote w = (x+δ/2, ε).
One of the pairs u,w and v, w meets two different colors. Let it be u,w. Then one needs
to use an additional color for the point ξ that is at the distance 1 of u and w and lies
inside the strip. �

u v

ξ

w

1

1

Figure 2. The lower bound on χ(R× [0, ε]).

In the case where
√

3
4k < h ≤

√
8
9k , the set R × [0, h]k contains the strip R× [0, h1],

h1 >
√
3/2, which is the product of R and a k-dimensional hypercube with the edge length

h. In the strip we can embed the distance graph depicted in Figure 2, and moreover,
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d(y, z) can be an arbitrary number in [0, 3− 2
√
3− h2

1]. We choose an embedding of the
graph such that the points x, y, z lie on the boundary of the strip and d(y, z) = 1/m,
m ∈ N. Copying the construction m times, we get a distance graph with the chromatic
number 4. �

Remark. The number of vertices tends to infinity as h tends to the value corresponding

to a gap of χ(R×h) (h = 0 and h =
√

3
4k ), but the graph can be embedded to a bounded

domain not depending on h.

Obviously, the function ξn,k(h) = χ(Rn × [0, h]k) defined for h ≥ 0 is monotone
nondecreasing. For every fixed n, k, the number of possible values of ξn,k(h) is finite
because χ(Rn) ≤ ξn,k(h) ≤ χ(Rn+k), and so the number of discontinuity points is finite.
But it seems plausible that in the case where n > 1, one cannot find a discontinuity point
of ξn,k(h) without refinements of the current bounds on χ(Rn).

x y z

Figure 3. A chain of θ-graphs in the strip.

In fact, the lower bound from Proposition 3.1 can be extended.

Proposition 3.2. Let ε be a positive real number, and let Q be an ε-neighborhood of
some curve ξ of diameter at least 2. Then χ(Q) ≥ 3.

3.2. Chromatic numbers of 2-dimensional layers. Let us consider an intermediate
case between plane and space, i.e., R2 × [0, ε] (a layer of height ε).

Although this metric space is still 7-colorable, the following lower bound is more
difficult than in the plane’s case.

Theorem 3.1. Let ε be a positive number less than
√
3/7. Then

5 ≤ χ(R2 × [0, ε]) ≤ 7.

Unlike the strip case (n = 1), we cannot even show that the function χ(R2 × [0, ε]) is
discontinuous at the point ε = 0.

Now we consider a “blow-up” of the plane in a higher-dimensional space. Since the
standard plane 7-coloring does not contain distances from some interval, the upper bound
preserves when the dimension grows.

Theorem 3.2. Let k be an integer and let ε < ε0(k) be a positive number. Then

χ(R2 × [0, ε]k) ≤ 7.

The lower bound can be refined even for k = 2.

Theorem 3.3. Let ε be a positive number. Then

χ(R2 × [0, ε]2) ≥ 6.



766 A. YA. KANEL-BELOV, V. A. VORONOV, AND D. D. CHERKASHIN

Note that in fact we again consider colorings of a bounded domain, with diameter
independent of ε.

In the proof of Theorem 2.4 we use the following lemma, which is interesting by itself.

Lemma 3.1. Suppose that the Euclidean plane is properly k-colored. Then for an arbi-
trary ε > 0 there is an ε-ball containing points of at least 3 colors.

Corollary 3.1. Suppose that the Euclidean plane is properly k-colored. Then for an
arbitrary ε > 0 there is a circle of radius ε containing points of at least 3 colors.

We prove a generalization of Lemma 3.1.

Theorem 3.4. Suppose Rn is properly m-colored. In other words, let Ci be the set of
points of color i; we have

m⋃
i=1

Ci = Rn,

and every Ci has no pair of points at the distance 1. Then there is a point lying in n+1
different sets Ci.

This statement is obvious if the connected components of Ci are polytopes, but it is
also valid in the case of a general covering with one forbidden distance.

3.3. Chromatic numbers of rational spaces. The following theorem holds true in
the rational case.

Theorem 3.5. For a sufficiently small positive ε we have

χ(Q× [0, ε]3Q) = 3.

Obviously [0, ε]3Q cannot be replaced by [0, ε]2Q because χ(Q3) = 2.

§4. Proofs

We start with a construction widely used in the proofs.

Definition 4.1. Let ωr be a circle with radius r. We call r > 0 a forbidden radius if
G1(ωr) contains an odd cycle.

Proposition 4.1. The forbidden radii are dense in [1/2,∞).

Proof. Indeed, every q ∈ Q ∩ (0, 1
2 ) such that q = l

2k+1 with k, l ∈ N gives a forbidden
radius

r =
1

2 sinπq
. �

4.1. Proof of the lower bound in Theorem 3.1. Denote the Euclidean metrics by
ρ, and the sphere (of maximal dimension) with radius r and center u by S(u; r). Suppose
that a layer R2× [0, ε] is properly colored. Let 0 < δ < ε2. Choose points u, v of different
colors on the boundary of the layer (R2 × {0}) such that ρ(u, v) = δ.

We pick ε1 > 0 such that
√
δ ≤ ε1 < ε and r =

√
1− ε21/4 is a forbidden radius.

Let us construct an isosceles triangle uvw such that the altitude ww1 is perpendicular
to the boundary of the layer and the lateral sides are of length ε1. Since u and v have
different colors, at least one of the pairs u,w and v, w has different colors. Without loss
of generality, suppose that the points u, w are of colors 1 and 2. Then the circle

ω = S(u; 1) ∩ S(w; 1)

lies in the layer, has no points of colors 1 and 2, and has forbidden radius r, so it demands
at least 3 additional colors. �
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R2×{0}

R2×{ε}
ε

ω
w

v
u

1

1

Figure 4. A circle with forbidden radius in the layer R2 × [0, ε].

4.2. Proof of the upper bound in Theorems 3.1 and 3.2. Consider the standard
proper coloring of the plane in 7 colors (see Figure 1). It has no pair of points of the

same color at a distance between 2/
√
7 and 1. Let us color the layer in the following way:

every hypercube (x, y) × [0, ε]k gets the color of the point (x, y) in the plane coloring.

This coloring is proper if (2/
√
7)2 + kε2 < 1, which is equivalent to the inequality in the

statement. �
4.3. Proof of Proposition 3.2. Without loss of generality assume that ε < 1. Suppose
the contrary, i.e., there is a proper 2-coloring of Q. Denote by G(Q) the corresponding
graph and find an odd cycle.

Consider a point u ∈ ξ. The intersection of S(u; 1) and ξ is nonempty because
Diam ξ ≥ 2. Let v ∈ S(u; 1) ∩ ξ, ‖u − v1‖ = 1, and ‖vi − vi+1‖ = 1, i = 1, 2, 3. If
all the edges between neighbor unit elements of the broken line vuv1v2v3v4 do not exceed
ε
2 , then ‖v − v1‖ < ε

2 , ‖u − v2‖ < ε
2 , ‖v − v3‖ < ε, ‖u − v4‖ < ε, and then vi ∈ Q,

i = 1, 2, 3, 4.

u
v

v1

v2
v3

v4

Figure 5. A path of length 4 connecting u and v4.

Moreover, l1 = ‖u − v2‖ ∈
[
0; 2 sin ε

4

]
and l2 = ‖v2 − v4‖ ∈

[
0; 2 sin ε

4

]
can be cho-

sen arbitrarily, and the oriented angle between the vectors −→v2u and −−→v2v4 can be chosen
independently in the interval [− ε

4 ;
ε
4 ]. Fix the line containing the vector −→v2u, let it be

orthogonal to uv. Then all possible positions of v4 form a figure containing a rhombus
centered at u with the length of side 2 sin ε

4 and the angle ε
2 . Therefore, there exists a

path of length 4 between u and an arbitrary point in the γ-neighborhood of u, where
γ = sin ε

2 sin
ε
4 .
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Walking in this way along the curve ξ with steps of size γ from u to v, we construct
an even path connecting u and v, and so an odd cycle in G(Q). �

4.4. Proof of Lemma 3.1. We show the existence of a ball of an arbitrarily small
radius containing points of at least 3 colors. Suppose the contrary: there is a proper
plane coloring and ε > 0 such that every ε-ball contains points of at most 2 colors.
Divide plane into squares with side

δ ≤ 2√
10

ε.

Then every such square is 2-colored.
By Proposition 3.2, the outer boundary of any connected 2-colored domain forms some

finite figure (otherwise, connecting centers of adjacent squares one can get a sufficiently
large broken line). Every 2-colored connected domain consist of monochromatic squares,
so it has finite diameter. So we can consider a 2-colored connected domain such that
its outer boundary forms a figure of the maximal area. Addition of an arbitrary outer
adjacent square gives a contradiction. �

4.5. Proof of Corollary 3.1. By Lemma 3.1, for every ε > 0 there is a ball of radius
ε containing points of three different colors. We show that there is a circle of radius at
most ε such that it has points of at least 3 colors. Consider a triangle ABC in an ε-ball
with differently colored vertices. It has an obtuse angle (otherwise the circumscribed
circle of the triangle fits); without loss of generality it is angle A. Consider the point
D such that ∠ADB = ∠ADC = π/3. Then ∠BDC = 2π/3. Note that at least one
of the triangles ABD, ACD, BCD has all vertices of different colors. The radii of the
circumscribed circles of these triangles are at most

ε

2 sin∠D =
ε√
3
< ε.

The proof is complete, because ε > 0 can be chosen arbitrarily. �

4.6. Proof of Theorem 3.3. The proof is based on the following construction: if
there is a triangle with vertices v1, v2, v3 of different colors lying in the layer and having
circumscribed circle centered at u0, then the layer contains a circle that is the intersection
of three unit spheres with centers at v1, v2, v3. Under a proper choice of the vertices of
that triangle, this circle contains an odd cycle, so it demands at least three additional
colors, giving the required bound.

Consider a proper coloring of a layer

R2 × [0, ε]2 = {(x, y, z, t) | x, y ∈ R, z, t ∈ [0, ε]}

in some colors. We need the following auxiliary statement.

Proposition 4.2. Let φ(v1, v2, v3) be the angle between the 2-dimensional plane con-
taining v1, v2, v3 and the plane {(0, 0, z, t)}. For arbitrary ε2 > 0, ε3 > 0, the layer
contains a triangle with vertices v1, v2, v3 of three different colors and with angles α1,
α2, α3 satisfying the following conditions:

φ(v1, v2, v3) ≤ ε2;(1)

αi ≥
π

5
− ε3, i = 1, 2, 3.(2)

Proof. Choose ε1 < ε/2. Let M = {(z1, t1), (z2, t2), . . . (z5, t5)} be the vertex set of a
regular pentagon inscribed into the circle with radius ε1 centered at (ε/2, ε/2). For a
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given point (x, y) ∈ R2, define Qx,y as the vertices of the corresponding pentagon in the
infinitesimal square:

Qx,y = {(x, y)} ×M.

If Qx,y has at least 3 colors for some x, y, then a triangle with vertices of Qx,y of
different colors is proper. Suppose the contrary, i.e., for every x, y the set Qx,y has at
most 2 colors. Then Qx,y has at least 3 points of some color; denote this color by c(x, y).

(x,y,0,0)

(x,y,ε,ε)

(x,y,z1,t1)

Figure 6. Five points Qx,y = {(x, y)} ×M .

For a given coloring of the strip, consider an auxiliary coloring of an auxiliary plane
P = R2 defined in the following way: a point (x, y) has the color c(x, y). Note that this
coloring is proper. Indeed, if the points (x1, y1) and (x2, y2) are at the distance of 1 and
have the same color (say, 1), then the corresponding fives in the layer Qx1,y1

= {q1i},
Qx2,y2

= {q2i} each have at least 3 points of color 1. But since

ρ(q1i, q2i) = 1, i = 1, . . . , 5,

the set Qx1,y1
∪Qx2,y2

contains at most 5 points of each color.
Applying Lemma 3.1 to P , we see that for every δ > 0 there are points u, v, w of

different colors c(u), c(v), c(w) with pairwise distances of at most δ. This means that
the fives Qu, Qv, Qw have at least 3 points of colors c(u), c(v), c(w), respectively. We
can choose a point in each set with different projections to the plane (0, 0, z, t) and of
colors c(u), c(v), c(w). It is easily seen that the conditions

16

(
δ

ε1
+ 2

δ2

ε21

)
≤ sin ε2;

δ ≤ ε1
2
sin

ε3
2

imply inequalities (1), (2). �

Now we are ready to prove Theorem 3.3. Consider points v1, v2, v3, satisfying the
conditions of Proposition 4. Let u0 be the center of the circumscribed circle of the
triangle v1v2v3, let n be some unit vector orthogonal to the 2-dimensional triangle’s
plane, let u1 = u0 + δ1n, and let L(u1, v1, v2, v3) be the hyperplane containing u1, v1,
v2, v3. Let B(u1; δ2) ⊂ L(u1, v1, v2, v3) be the open 3-dimensional ball of radius δ2 > 0
centered at u1.

For a given point w ∈ B(u1; δ2), we define

T1(w) = S(v2; 1) ∩ S(v3; 1) ∩ S(w; 1),
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where S(v; 1) is the unit sphere, centered at v.

T1

v1

v2 v3
1

1

1
u0

u1

w

δ1

r1

B(u1, δ2)

Figure 7. Construction of a circle of forbidden radius.

Let the radius of the circle T1(w) be r1(w); the circles T2(w), T3(w) and so their radii
r2(w), r3(w) are defined similarly.

Note that the vertices of wv1v2, wv2v3, wv1v3 are at the distance of at most δ+δ1+δ2
from the vertices of the triangle, lying in {(0, 0)} × [0, ε]2; therefore, if δ, δ1, δ2 are
sufficiently small, then the corresponding circles lie inside the layer.

For the 3-dimensional ball B(u1; δ2) defined above, we introduce the function

r : B(u1; δ2) → R3;

r(w) = (r1(w), r2(w), r3(w)).

Observe that in the case where w = u1, the gradients of ri(w) are collinear to the
medians of the isosceles triangle u1v2v3, u1v1v3, u1v1v2 corresponding to u1:

∇r1(u1) = λ1 (u1 − (v2 + v3)/2) ; ∇r2(u1) = λ2 (u1 − (v1 + v3)/2) ;

∇r3(u1) = λ3 (u1 − (v1 + v2)/2) ,

and also λi 
= 0 and the simplex u1v1v2v3 is nondegenerate. Hence, for w = u1 the
Jacobian ∂r/∂w is not 0, and in a neighborhood of u1 the function r( · ) satisfies the
conditions of the inverse function theorem. But the forbidden radii are dense in a neigh-
borhood of every image r1(w), r2(w), r3(w), so that there is a triple of forbidden radii
r∗1 , r

∗
2 , r

∗
3 with a preimage u∗ in B(u1; δ2).

Then for every color of u∗ at least one of the triangles u∗v1v2, u
∗v2v3, u

∗v1v3 has
vertices of different colors, and the corresponding circle of forbidden radius has at least 3
additional colors. Summarizing, we get χ(R2 × [0, ε]2) ≥ 6. �

4.7. Proof of Theorem 3.4. The idea of the proof is to construct a family of closed
sets of diameter at most 2 such that they cover Rn. Then the statement follows from the
definition of topological dimension (we use the standard topology on Rn).

Recall that Ci is the set of points of Rn of the ith color, 1 ≤ i ≤ m, and put

C∗
i := IntCi (the closure of the interior of the closure).

Split every C∗
i in the connected components (in the sense of the standard topology):

C∗
i =

⋃
α∈Ai

Dα.

For brevity, denote {Dα} =
⋃m

i=1

⋃
α∈Ai

Dα.

(i). The sets C∗
i cover Rn.

Suppose the contrary: there exists v so that v /∈ C∗
i for all i. Then there is an open

ball B(v; ε) with

B(v; ε) ∩ C∗
i = ∅, B(v; ε) ⊂

⋃
Ci.
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Consider a ball

B1 ⊂ B(v; ε) \ C1.

Obviously, B1 cannot be a subset of Ci, otherwise the intersection of Ci and B(v; ε) is
nonempty. Define a nested sequence of balls

Bk+1 ⊂ Bk \ Ck.

The points of Bm+1 belong to none of the Ci, which is a contradiction.

(ii). If the unit sphere S centered at a point v contains inner points of Ci, 1 ≤ i ≤ k ≤ n,
then v belongs to at least one of the sets C∗

j , k + 1 ≤ j ≤ m.

One can choose points x1, . . . , xn such that

xi ∈ S ∩ IntCi, 1 ≤ i ≤ k,

xi ∈ S, k + 1 ≤ i ≤ n,

and {v, x1, . . . , xn} are in a general position (in the sense on nondegenerate simplices).
Consider ε > 0 such that B(xi; ε) ⊂ Ci, 1 ≤ i ≤ k. The color of the point

w = w(q1, . . . , qk) =
⋃

1≤i≤k

S(qi; 1)

(if it is defined) differ from all the colors q1, . . . , qn. Let

z ∈ B(0; ε), yi = xi + z.

In a sufficiently small neighborhood of the set of points {yi}, the function w(·) is defined
and continuous in each argument. Choose points

y′i ∈ Ci, 1 ≤ i ≤ k,

y′i = yi, 1 ≤ k + 1 ≤ n,

such that w(y′1, . . . , y
′
n) exists. Then

w(y′1, . . . , y
′
k) ∈

m⋃
j=k+1

Cj .

Moreover,

δ(y′1, . . . , y
′
k) = max

1≤i≤k
‖y′i − yi‖

can be arbitrarily small, whence

w(y1, . . . , yk) ∈
m⋃

j=k+1

Cj .

Since z ∈ B(0; ε) can be chosen arbitrarily, we have

B(v; ε) ⊂
m⋃

j=k+1

Cj .

Hence, at least one of the sets Cj , j = k+ 1, . . . ,m, is dense in some neighborhood of v.

(iii). If a point v ∈ Rn is covered by at most n sets from {Dα}, then the diameter of at
least one of these sets is at most 2.

Otherwise every set in {Dα} that covers v has a nonempty intersection with the sphere
S radius of 1 centered at v. Without loss of generality we may assume that v is covered
by the sets D1, . . . , Dn that are the connected components of C∗

1 , . . . , C
∗
n, respectively.

Let min{DiamDi} = 2 + δ.
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Let w ∈ Rn with ‖w‖ = 1 be a direction, and let Sη be the unit sphere centered at
the point u(η) = v + ηw, η ∈ R+. Then the set

Ti =
{
η ∈ R+ : Sη ∩ IntDi 
= ∅; 1 ≤ i ≤ n

}
is dense in [0, δ]. Hence, for all η ∈ [0, δ] we have

u(η) ∈
m⋃

n+1

Cj .

The same argument is valid for an arbitrary unit vector w. But then every neighborhood
of v contains a ball that is a subset of

⋃m
n+1 Cj , and hence, contains an inner point of at

least one set Cj , j > n. This contradiction proves (iii).

(iv). If every point of Rn is covered by at most n sets from {Dα}, then the family of
sets Δ = {Dα| Diam(Dα) ≤ 2} covers Rn.

This is an obvious consequence of (iii).

(v). There are sets D′
1, D

′
2, . . . , D

′
n+1 ∈ Δ with nonempty intersection.

Consider the ball B(0;R) ⊂ Rn and its covering by a family of sets from Δ. A suitable
definition of the topological dimension (see P. S. Aleksandrov and B. A. Pasynkov [1])
shows that if B(0;R) is covered by closed sets of diameter at most 2 and R is sufficiently
large, then there are n+ 1 sets with nonempty intersection.

(vi). There are n+ 1 sets from {Ci} with nonempty intersection of closures.

Suppose that sets D′
1, D

′
2, . . . , D

′
n+1 ∈ Δ satisfy

n+1⋂
i=1

D′
i 
= ∅,

D′
i ⊂ C∗

li , i = 1, 2, . . . , n+ 1.

Note that the indices li are pairwise different, otherwise pairwise intersecting sets D′
i are

not different connected components of C∗
i . Hence,

∅ 
=
n+1⋂
i=1

D′
i ⊂

n+1⋂
i=1

C∗
li ⊂

n+1⋂
i=1

Cli ,

and {Cli} is the desired subfamily. �
Remark. By using the Sperner lemma, one can get a bound on the radius of a ball
containing at least one point from n+ 1 sets Ci.

4.8. Proof of Theorem 3.5. Let x be the valid coordinate and y, z, t infinitesimal
coordinates.
The upper bound. Color a point (x, y, z, t) such that 2k

3 < x ≤ 2(k+1)
3 in color k mod 3

(k is integer).
The lower bound. We show the existence of an odd cycle in the distance graph G1(Q×
[0, ε]3Q).

Consider an even n with n > 2ε−2 and a vector e = (1− n−1, bn−1, cn−1, dn−1) such
that b2 + c2 + d2 = 2n − 1. This vector has unit length. Note that e lies in the strip in
question because

max
(
|b|n−1, |c|n−1, |d|n−1

)
<

√
2

n
< ε.

Also consider the vector e′ = (1−n−1,−bn−1,−cn−1,−dn−1) and the sequence of points
Ai defined in the following way:

A0 := (0, 0, 0, 0); A2k+1 := A2k + e; A2k+2 := A2k+1 + e′.
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Easily, An = (n − 1, 0, 0, 0) because n is even. So the points A0, . . . , An and the points
(1, 0, 0, 0), . . . , (n−2, 0, 0, 0) form a desired odd cycle. Finally, observe that for every ε > 0
there exist integers n, b, c, d satisfying our conditions (for example, b = c = d = 2l + 1,
n = 6l2 + 6l + 2, where l is sufficiently large). �

§5. Conclusion and further questions

We have shown that 5 ≤ χ(R2 × [0, ε]) ≤ 7 and 6 ≤ χ(R2 × [0, ε]2) ≤ 7, and also that
χ(R2 × [0, ε]k) ≤ 7 for a sufficiently small ε > 0. The question on the existence of k such
that χ(R2 × [0, ε]k) = 7 for an arbitrarily small ε > 0 arises naturally.

One can observe that we have discrete continuity in the cases where we can compute
the chromatic number of a real layer. Is this true in general? In other words, is the
function χ(Kn × [0, ε]m), where K ∈ {R,Q}, discrete continuous in ε?

In the 1-dimensional and 2-dimensional cases, the additional infinitesimal dimension
increases the lower bound on the chromatic number of the space. General arguments show
that the inequality χ(R3 × [0, ε]) ≥ 7 should be valid, where ε is an arbitrary positive
number, but we cannot prove it. Moreover, we conjecture that χ(Rn × [0, ε]) > χ(Rn),
but it seems much harder.

In the paper [16], A. Kupavskĭı asked about the maximal guaranteed number of col-
ors in an m-dimensional sphere of radius r over all proper colorings of Rn in finitely
many colors. In the same paper some bounds for r separated away from 0 were given.
Lemma 3.1 complements these results in the case of infinitesimal r, but only for n = 2,
m = 1. It seems plausible that Theorem 3.4 can be used to get the same result for
n = m+ 1 and arbitrary n > 2.

A dual problem is also of interest, i.e., to construct a “reasonable” metric space with
chromatic number exactly k for a given integer k. For instance, such a problem is
interesting for a space with large affine subspace, in particular, for [0, h1]×· · ·× [0, hm]×
[0, ε]l × Rs, s > 0.
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