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MARTINGALES AND FUNCTION SPACES

MASATO KIKUCHI

1. Introduction

The notion of a martingale was introduced by Doob in [18], although the word
‘martingale’ was not used in [18]. Nine years later, that is, in 1949 Doob himself
had used the word ’martingale’. In his book [19] published in 1953, the basic
theory of martingales was summarized. During the next 25 years, martingale theory
was developed drastically. The contribution of P. A. Meyer and his colleague are
particularly noteworthy. For the theory developed by them, see Dellacherie [15],
Dellacherie and Meyer [16],[17], and Kazamaki [27], [30].

In recent years, applications of martingale theory to mathematical finance have
attracted attention; and researchers interested in martingale theory are now in-
creasing. However, a lot of researchers are not interested in martingale theory
itself. In this article, we will focus on analytical aspects of martingale theory; we
will give an overview of results on norm convergence of martingales and on norm
inequalities for martingales, in a Banach function space.

To avoid cluttering the notation, we will consider only discrete-parameter mar-
tingales (with values in R). That is, the set of parameters of each martingale is
Z+ := N∪{0}. Almost all results in this article hold true for continuous martingales.

2. Preliminaries

2.1. Martingales. Throughout this article, we let (Ω,Σ,P) be a nonatomic prob-
ability space, that is, a probability space with no atom. Here, by an atom, we
mean a set A ∈ Σ with positive measure such that if A′ ∈ Σ is a subset of A, then
either P(A′) = 0 or P(A′) = P(A). If A is an atom, then every random variable
(in other words, Σ-measurable function) is essentially constant on A. In contrast,
our assumption that (Ω,Σ,P) is nonatomic guarantees that there exists a random
variable with arbitrary distribution. Moreover, our assumption guarantees that for
any t ∈ [0, 1], there exists a set A ∈ Σ such that P(A) = t (see [12, p. 44]).

Let x ∈ L1(Ω) and let A be a sub-σ-algebra of Σ. We let E[x |A] denote the
conditional expectation of x given A. This means that E[x |A] is characterized as
an essentially unique A-measurable random variable y ∈ L1(Ω) such that∫

A

x dP =

∫
A

y dP for all A ∈ A.

Thus x �→ E[x |A] defines a linear projection of L1(Ω) onto the linear subspace
of L1(Ω) consisting of all A-measurable random variables. Moreover, if x is a
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nonnegative random variable, then we can define the conditional expectation E[x |A]
by letting E[x |A] = supn∈N

E[min{x, n}|A].
Let F = (Fn)n∈Z+

be a sequence of sub-σ-algebras of Σ. We call F a filtration
of Ω if Fn ⊂ Fn+1 for all n ∈ Z+. We let F denote the set of all filtrations of Ω.
Given F = (Fn)n∈Z+

∈ F, we say that a stochastic process (that is, a sequence
of random variables) f = (fn)∈Z+

is adapted to F if each fn is Fn-measurable.
A process f = (fn) adapted to a filtration F = (Fn) is called an F-martingale if

fn ∈ L1(Ω) and E[fn+1 |Fn] = fn a.s. for all n ∈ Z+,

where “a.s.” is the abbreviation for “almost surely”. Thus if f = (fn) is a martin-
gale, then ∫

A

fn+1 dP =

∫
A

fn dP for all n ∈ Z+ and all A ∈ Fn.

Given F = (Fn) ∈ F, we let M(F) denote the set of all F-martingales, and we let
M =

⋃
F∈F

M(F). We call f = (fn) ∈ M merely a martingale. For a martingale
f = (fn), we let Mf denote the maximal function of f = (fn), and we let Sf denote
the square function of f = (fn); that is,

Mf = sup
n∈Z+

|fn| and Sf =

[ ∞∑
n=0

(Δnf)
2

]1/2

,

where

Δ0f = f0; Δnf = fn − fn−1, n ∈ N.

As is well known, if f = (fn) ∈ M is such that supn∈Z+
‖fn‖L1

< ∞, then

f = (fn) converges a.s. (see [17, p. 24] or [29, p. 65]). Such a martingale f = (fn)
is said to be bounded in L1. More generally, if X is a normed space of random
variables and if supn∈Z+

‖fn‖X < ∞, then f = (fn) is said to be bounded in X.
A family of random variables H is said to be uniformly integrable if

lim
λ→∞

sup
x∈H

∫
{ω∈Ω: |x(ω)|>λ}

|x| dP = 0.

Let {xn} be a sequence of random variables which converges a.s. Then {xn} is
uniformly integrable (as a family of random variables) if and only if it converges
in L1(Ω) with respect to the norm topology. It is clear from the definition that if
H is uniformly integrable, then supx∈H ‖x‖L1

< ∞. However, the converse is false.

On the other hand, if 1 < p ≤ ∞ and supx∈H ‖x‖Lp
< ∞, then H is uniformly

integrable. For more details, see, e.g., [16, pp. 33–39].
Let F = (Fn) ∈ F. If f = (fn) ∈ M(F) converges a.s., we let f∞ denote the

almost sure limit of f = (fn). If f = (fn) is uniformly integrable, then it is bounded
in L1 and hence converges a.s. In this case, we have fn = E[f∞ |Fn] a.s. for all
n ∈ Z+, and f = (fn) converges in L1. Conversely, if there exists x ∈ L1(Ω) such
that fn = E[x |Fn] a.s., then f = (fn) is uniformly integrable.

Other results on martingales, mentioned in this article, can be found in [17], [29],
[57], [64], [68], [71], and [72].



MARTINGALES AND FUNCTION SPACES 119

2.2. Banach function spaces. Throughout this article, we let I be the interval
(0, 1], and we consider I = (0, 1] as the probability space equipped with Lebesgue
measure μ. From this point of view, a measurable function φ on I should be called
a “random variable”. However, we sometimes call φ a “measurable function” to
indicate that φ is defined on I. A Banach function space, which is one of the
central themes of this article, is a Banach lattice of random variables possessing the
Fatou property. In order to give the precise definition, we introduce the following
notation.

Let X and Y be Banach spaces of random variables on a (same) probability
space. We write X ↪→ Y to mean that X is continuously embedded in Y , that is,
X ⊂ Y and the inclusion map is continuous.

Definition 2.1. A Banach function space is a real Banach space X of (equivalence
classes of) random variables on a probability space which satisfies the following
conditions:

(B1) L∞ ↪→ X ↪→ L1.
(B2) If |x| ≤ |y| a.s. and y ∈ X, then x ∈ X and ‖x‖X ≤ ‖y‖X .
(B3) If 0 ≤ xn ↑ x a.s., xn ∈ X for all n ∈ N, and supn∈N

‖xn‖X < ∞, then
x ∈ X and ‖x‖X = supn∈N ‖xn‖X .

We adopt the convention that if x is a random variable which does not belong to
X, then ‖x‖X = ∞.

For example, Lebesgue spaces Lp, Orlicz spaces LΦ, and Lorentz spaces Lp,q

are Banach function spaces. (For details of Orlicz spaces, see [53], [54], [60], or
[67]; and for details of Lorentz spaces, see [6] or [21].) Moreover, if 1 < p < ∞,
if w is a random variable such that E[w] = 1 and w−1/(p−1) ∈ L1(Ω), and if Pw

is the probability measure defined by Pw(A) =
∫
A
w dP, then the Lebesgue space

Lp(Pw) with respect to Pw is a Banach function space over (Ω,Σ,P). Here the

condition that w−1/(p−1) ∈ L1(Ω) guarantees the embedding Lp(Pw) ↪→ L1(Ω)
(cf. [34, Section 3]). We call Lp(Pw) the weighted Lebesgue space. One can define
the weighted Orlicz space LΦ(Pw) in the same way.

Let X be a Banach function space over Ω or I. For each random variable x, let

‖x‖X′ = sup
{
E
[
|xy|

]
: y ∈ X, ‖y‖X ≤ 1

}
and define

X ′ = {x ∈ L0 : ‖x‖X′ < ∞},
where L0 denotes the linear space of random variables which are finite a.s. Then
X ′ is a Banach function space. We call X ′ the associate space of X. For any
Banach function space X, the associate space of X ′ coincides with X, that is,
X ′′ = X and ‖x‖X′′ = ‖x‖X for all x ∈ X (see [6, Theorem 2.7, p. 10]). This
shows that the associate space X ′ and the dual space X∗ does not necessarily
coincide. Indeed, we have (L∞)′ = L1, but L1 is not the dual space of L∞ (when the
underlying probability space is nonatomic). A necessary and sufficient condition for
the associate space X ′ to coincide with X∗ is that X has the absolutely continuous
norm (see Definition 3.1 and [6, Corollary 4.3, p. 23]).

Among many Banach function spaces, rearrangement-invariant spaces, which are
defined as follows, are essentially important in various studies. In what follows, we
write x � d y if x and y are random variables with the same distribution.
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Definition 2.2. A Banach function space X is said to be rearrangement-invariant
or r.i. if X has the property that whenever x � d y and y ∈ X, then x ∈ X and
‖x‖X = ‖y‖X .

By an r.i. space, we mean a rearrangement-invariant Banach function space.

It is easy to see that Lebesgue spaces and Orlicz spaces are r.i. Moreover, Lorentz
spaces are also r.i. On the other hand, the weighted Lebesgue space Lp(Pw) is a

Banach function space which is not r.i. in general, provided w−1/(p−1) ∈ L1(Ω). If
there exist positive constants a and b such that a ≤ w ≤ b a.s., then there exists
a norm ||| · |||Lp(Pw) on Lp(Pw) which is equivalent to the original norm of Lp(Pw)

and with respect to which Lp(Pw) is an r.i. space over (Ω,Σ,P). Conversely, if such
a norm ||| · |||Lp(Pw) exists, then a ≤ w ≤ b a.s. for some positive constants a and b

(see [32]; cf. [38, Section 4]).
Given a subset A of Ω or of I, we let 1A denote the indicator function of A. Let

X be an r.i. space. For each t ∈ [0, 1], we choose A ∈ Σ so that P(A) = t and we
let

ϕX(t) = ‖1A‖X .

If A,B ∈ Σ and P(A) = P(B), then 1A and 1B have the same distribution. Thus
the value of ‖1A‖X depends only on the measure of A. Furthermore, since we
are assuming that (Ω,Σ,P) is nonatomic, we can certainly choose A ∈ Σ so that
P(A) = t. Thus the function ϕX : [0, 1] → [0,∞) is well defined; ϕX is called the

fundamental function of X. For example, ϕLp
(t) = t1/p when 1 ≤ p < ∞, and

ϕL∞
(t) = 1(0,1](t).

Note that the fundamental function is defined when X is r.i. In Section 7, we
will introduce the generalized fundamental functions of a Banach function space.

In order to state some of the results in this article, we will use the Boyd indices of
an r.i. space. The Boyd indices of an r.i. space X, which describe the nature of X,
were introduced by Boyd [8] to establish an interpolation theorem. To give a precise
definition of the Boyd indices, we need some further definitions and notation.

Let x be a random variable on Ω. We define a measurable function x∗(t) on
I = (0, 1] by

x∗(t) = inf
{
λ > 0: P (ω ∈ Ω: |x(ω)| > λ) ≤ t

}
, t ∈ I,

with the convention that inf ∅ = ∞. We call x∗ the nonincreasing rearrangement
of x. Note that x∗ is a nonincreasing right-continuous function whose distribution
is the same as that of |x|. By regarding I as a probability space, we can define the
nonincreasing rearrangement φ∗ of a measurable function φ on I.

It is known that if X is an r.i. space over Ω, then there exists an r.i. space X̂
over Ω such that:

• x ∈ X if and only if x∗ ∈ X̂.
• ‖x‖X = ‖x∗‖X̂ for all x ∈ X.

Such an r.i. space X̂ is unique; we call X̂ the Luxemburg representation of X.
For details, see [6, pp. 62–64]. For example, the Luxemburg representation of Lp(Ω)
is Lp(I).

As mentioned before, we denote by L0 the linear space of random variables which
are finite a.s. We also write L0(Ω) (resp., L0(I)) to indicate that it is the space of
random variables defined on Ω (resp., I). If Z is a Banach function space, we let
B(Z) denote the set of all linear operators T satisfying the following conditions:
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• The domain of T contains Z and the range of T is contained in L0.
• The restriction of T to Z is a bounded linear operator on Z into Z.

Given T ∈ B(Z), we let ‖T‖B(Z) denote the operator norm of the restriction of T

to Z.
For each number s > 0, we define a linear operator Ds : L0(I) → L0(I) by

(Dsφ)(t) =

{
φ(st), st ∈ I,
0, st /∈ I,

t ∈ I.

If Z is an r.i. space over I, then Ds ∈ B(Z) for all s > 0 and ‖Ds‖B(Z) is less than

or equal to max{1, (1/s)}. Using these operators, we define the lower Boyd index
αZ and the upper Boyd index βZ by

αZ = sup
0<s<1

log
∥∥D1/s

∥∥
B(Z)

log s
and βZ = inf

1<s<∞

log
∥∥D1/s

∥∥
B(Z)

log s
,

respectively. One can show that

αZ = lim
s→0+

log
∥∥D1/s

∥∥
B(Z)

log s
and βZ = lim

s→∞

log
∥∥D1/s

∥∥
B(Z)

log s
.

If X is an r.i. space over Ω, then the Boyd indices of X are defined by

αX = αX̂ and βX = βX̂ ,

where X̂ is the Luxemburg representation of X. For every r.i. space X, we have
0 ≤ αX ≤ βX ≤ 1. For example, αLp

= βLp
= 1/p for all p ∈ [1,∞]. Thus the

Boyd indices are ones which extend the role of the index p of Lp. For details of the
Boyd indices, see [6, pp. 146–150]; cf. [6, p. 165]. About the matters which are not
mentioned in this section, see [6], [7], [12], [21], [22], [55], [56], [58], and [62].

3. Norm convergence of martingales in a Banach function space

Suppose that f = (fn)n∈Z+
is a uniformly integrable martingale. Then, as

mentioned before, f = (fn) converges a.s. and it also converges in L1. Moreover, if
f∞ ∈ Lp for p ∈ (1,∞), then f = (fn) converges in Lp.

Let X be a Banach function space over Ω and let f = (fn) be a uniformly inte-
grable martingale. Under what condition does f = (fn) converge in X? The results
in this section show that norm convergence of martingales is closely connected with
the uniform boundedness of conditional expectation operators. We begin with a
definition.

Definition 3.1. A Banach function space X over Ω is said to have absolutely
continuous norm if ‖x1An

‖X ↓ 0 for every x ∈ X and every sequence {An}n∈N of
sets in Σ satisfying An ↓ ∅ a.s. Here, and in what follows, we write An ↓ ∅ a.s. to
mean that An+1 ⊂ An for all n ∈ N and P(

⋂∞
n=1 An) = 0.

The first result on norm convergence of martingales is as follows.

Theorem 3.1 ([34]). Let X be a Banach function space over Ω which has absolutely
continuous norm, let F = (Fn) ∈ F, and let En denote the conditional expectation
operator E[ · |Fn] for each n ∈ Z+. Then the following are equivalent :
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(i) If f = (fn) ∈ M(F) is uniformly integrable and if f∞ ∈ X, then

lim
n→∞

‖fn − f∞‖X = 0.1

(ii) There exists n0 ∈ Z+ such that En ∈ B(X) for all n ≥ n0, and

sup
n≥n0

‖En‖B(X) < ∞.

An example in [34] shows that, in Theorem 3.1, condition (ii) cannot be replaced
by the boundedness of each En. Thus the uniform boundedness of {En : n ∈ Z+}
is essential.

Let X be an r.i. space. Then

E[ · |A] ∈ B(X) and
∥∥E[ · |A]

∥∥
B(X)

= 1

for all sub-σ-algebras A of Σ (see [36, Lemma 2]). It follows that if X has absolutely
continuous norm, then (i) of Theorem 3.1 holds. The next theorem asserts that the
converse is also true.

Theorem 3.2 ([34]). Let X be an r.i. space over Ω, and let F = (Fn) and En be
as in Theorem 3.1. Then the following are equivalent :

(i) If f = (fn) ∈ M(F) is uniformly integrable and if f∞ ∈ X, then

lim
n→∞

‖fn − f∞‖X = 0.

(ii) X has absolutely continuous norm.

Let us consider the case where X is a Lebesgue space, in Theorem 3.2. Note that
if 1 ≤ p < ∞, then Lp has absolutely continuous norm. Hence (i) of Theorem 3.2
holds when X = Lp. On the other hand, since L∞ does not have absolutely
continuous norm, (i) of Theorem 3.2 does not hold when X = L∞. In view of
this fact and the fact that αLp

= βLp
= 1/p, one may guess that a necessary and

sufficient condition for an r.i. space X to satisfy (i) would be that αX > 0 or that
βX > 0. However, this is false. Indeed, when (1 < p < ∞), the Lorentz space
Lp,∞ is an r.i. space which does not have absolutely continuous norm. Hence the
conditions of Theorem 3.2 are not satisfied when X = Lp,∞; however, we have
αLp,∞

= βLp,∞
= 1/p > 0 (cf. [33, Remark, p. 90]). Thus, it is impossible to

characterize an r.i. space X which satisfies the conditions of Theorem 3.2 by using
the Boyd indices.

Now let us consider the case where X is a weighted Lebesgue space, in Theo-
rem 3.2. Let w be a strictly positive random variable on Ω such that E[w] = 1, and
let F = (Fn) ∈ F. We also write w = (wn) for the F-martingale generated by w;
that is, wn = E[w |Fn] a.s. for n ∈ Z+. Let n0 ∈ Z+. When 1 < p < ∞, we say
that w satisfies condition Ap(F) for n ≥ n0 if there exists a positive constant K
such that

(Ap) sup
n≥n0

E

[(wn

w

)1/(p−1)
∣∣∣∣Fn

]
≤ K a.s.;

1As mentioned in Definition 2.1, we follow the convention that if x is a random variable which
does not belong to X, then ‖x‖X = ∞. Hence the condition limn ‖fn − f∞‖X = 0 implies that

fn − f∞ ∈ X for sufficiently large n.
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and we say that w satisfies condition A1(F) for n ≥ n0 if there exists a positive
constant K such that

(A1) sup
n≥n0

wn

w
≤ K a.s.

These conditions were introduced by Izumisawa and Kazamaki in [25]. It is known
that the martingale w satisfying condition Ap(F) can be represented by using a
BMO-martingale. Through this fact, the results of Izumisawa and Kazamaki con-
tributed to the later development of the theory of BMO-martingales. For details,
see Kazamaki [28] and the references therein.

As mentioned in the previous section, we define the probability measure Pw by
Pw(A) =

∫
A
w dP. Let us consider the weighted Lebesgue space Lp(Pw). In order

to guarantee that Lp(Pw) ↪→ L1, we assume that w−1/(p−1) ∈ L1 when we consider
the case where 1 < p < ∞, and we assume that w−1 ∈ L∞ when we consider the
case where p = 1. As in Theorem 3.1, let En denote the conditional expectation
operator E[ · |Fn]. Then

En ∈ B(Lp(Pw)) and sup
n≥n0

‖En‖B(Lp(Pw)) < ∞

if and only if w satisfies condition Ap(F) for n ≥ n0 (see [20]; cf. [37, Lemma 3]).
It is clear that if 1 ≤ p < ∞, then Lp(Pw) has absolutely continuous norm. Hence,
with the notation above, we have by Theorem 3.1 the following:

Corollary 3.1 ([34]). Suppose that 1 ≤ p < ∞. Then the following are equivalent :

(i) If f = (fn) ∈ M(F) is uniformly integrable and if f∞ ∈ Lp(Pw), then

lim
n→∞

‖fn − f∞‖Lp(Pw) = 0.

(ii) There exists n0 ∈ Z+ such that w satisfies condition Ap(F) for n ≥ n0.

Furthermore, we can derive a result on convergence of martingales also in a
weighted Orlicz space. Let Φ: [0,∞) → [0,∞) be a nondecreasing convex function.
If Φ(0) = 0 and Φ(t) → ∞ as t → ∞, we call Φ a Young function. If, in addition,
Φ(t) > 0 for t > 0 and Φ(t)/t → 0 as t → 0+, we call Φ an N -function.

Let Φ: [0,∞) → [0,∞) be an N -function, and consider the weighted Orlicz space
LΦ(Pw). To guarantee that LΦ(Pw) ↪→ L1, we assume that Ψ(w−1)w ∈ L1 (see [38,
Section 4]), where Ψ is the function defined by

Ψ(t) = sup{st− Φ(s) : 0 ≤ s < ∞}, t ∈ [0,∞).

We call Ψ the complementary function of Φ. As before, let F = (Fn) ∈ F and
wn = E[w |Fn], n ∈ Z+. We say that w satisfies condition AΦ(F) for n ≥ n0 if
there exists a positive constant K such that

(AΦ) E

[
Ψ

(
Φ(λ)wn

Kwλ

)
w

∣∣∣∣Fn

]
≤ Φ(λ) wn a.s.

for all λ > 0 and all n ≥ n0. It is easily checked that if Φ(t) = tp (1 < p < ∞),
then (AΦ) coincides with (Ap).

If w satisfies condition AΦ(F) for n ≥ n0, then En ∈ B(LΦ(Pw)) for all n ≥ n0

and

sup
n≥n0

‖En‖B(LΦ(Pw)) < ∞
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(see [39, Theorem 2]). On the other hand, according to [54, p. 88], LΦ(Pw) has
absolutely continuous norm if and only if Φ satisfies the Δ∞

2 -condition.2 Here we
say that Φ satisfies the Δ∞

2 -condition if there exist constants c > 0 and t0 ≥ 0 such
that Φ(2t) ≤ cΦ(t) for all t ≥ t0. With the notation above, we have by Theorem 3.1
the following:

Corollary 3.2. Suppose that an N-function Φ satisfies the Δ∞
2 -condition and that

there exists n0 ∈ Z+ such that w satisfies condition AΦ(F) for n ≥ n0.
If f = (fn) ∈ M(F) is uniformly integrable and f∞ ∈ LΦ(Pw), then

lim
n→∞

‖fn − f∞‖LΦ(Pw) = 0.

All the results mentioned above deal with convergence of uniformly integrable
martingales. In general, it is not easy to check the uniform integrability of a process.
Instead of doing so, one can often use a method of checking the boundedness of
the process in a Banach space. For instance, if 1 < p < ∞, then a martingale
which is bounded in Lp is uniformly integrable and converges in Lp. In contrast,
a martingale which is bounded in L1 converges a.s., but it may not be uniformly
integrable. A uniformly integrable martingale is bounded in L1 and converges in
L1. In view of these facts, it is natural to explore a characterization of a Banach
function space X such that every martingale bounded in X converges in X. When
X is an r.i. space, we have the following:

Theorem 3.3 (cf. [36]). Let X be an r.i. space over Ω. Then the following are
equivalent :

(i) If f = (fn) ∈ M is bounded in X, then

lim
n→∞

‖fn − f∞‖X = 0.

(ii) X has absolutely continuous norm and t/ϕX(t) → 0 as t → 0+.
(iii) X has absolutely continuous norm and X �= L1.

If X satisfies the conditions above, then every martingale f = (fn) which is bounded
in X is uniformly integrable.

In the theorem above, we notice that if f = (fn) is bounded in X, then it
converges a.s., because such a martingale is bounded in L1.

The equivalence of (i) and (ii) in Theorem 3.3 was proved by the author in [36].
When the equivalence of (i) and (ii) was proved, the author was not aware that (ii)
and (iii) are equivalent. We prove here the equivalence of (ii) and (iii).

First recall that ϕX(t)ϕX′(t) = t for all t ∈ [0, 1] (see [6, Theorem 5.2, p. 66]),
where X ′ denotes the associate space of X. This implies that t/ϕX(t) → 0+ as
t → 0+ if and only if ϕX′(t) → 0+ as t → 0+. Thus it suffices to show that
ϕX′(t) → 0+ as t → 0+ if and only if X �= L1. Moreover, since the condition
X �= L1 can be rewritten as X ′ �= L∞, it suffices to show that ϕX′(t) → 0+ as
t → 0+ if and only if X ′ �= L∞. Note that if X ′ = L∞, then

ϕX′(t) = 1(0,1](t) → 1 as t → 0+.

Thus we need only show that if X ′ �= L∞, then ϕX′(t) → 0+ as t → 0+. Suppose
that X ′ �= L∞; that is, L∞ � X ′. Let x ∈ X ′ \ L∞ be nonnegative, and let ε > 0.

2Whether an Orlicz space has absolutely continuous norm does not depend on the underlying
probability space.
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Choose λ > 0 so that ‖x‖X′ /λ < ε and let δ = P(ω ∈ Ω: x(ω) > λ). Since x /∈ L∞,
we have that δ > 0. For t ∈ (0, δ), choose A ∈ Σ so that P(A) = t. Then

1∗
A = 1(0,t) ≤ 1(0,δ) = 1∗

{ω∈Ω: x(ω)>λ}.

It follows that for t ∈ (0, δ),

ϕX′(t) = ‖1A‖X′ = ‖1∗
A‖X̂′ ≤ ‖1∗

{ω∈Ω: x(ω)>λ}‖X̂′

= ‖1{ω∈Ω: x(ω)>λ}‖X′ ≤
‖x‖X′

λ
< ε.

This shows that ϕX′(t) → 0 as t → 0+, as was to be shown.
Using Theorem 3.3, one can prove the following:

Corollary 3.3 ([36]). Let Φ: [0,∞) → [0,∞) be a Young function. Then the
following are equivalent :

(i) If f = (fn) ∈ M is bounded in LΦ, then

lim
n→∞

‖fn − f∞‖LΦ
= 0.

(ii) Φ satisfies the Δ∞
2 -condition and Φ(t)/t → 0 as t → 0+.

Note that if a Banach function space X is reflexive, then X has absolutely
continuous norm (see [6, p. 23]) and X � L1. This fact, together with Theorem 3.3,
gives the following:

Corollary 3.4 ([36]). Let X be a reflexive r.i. space over Ω. If f = (fn) ∈ M is
bounded in X, then

lim
n→∞

‖fn − f∞‖X = 0.

We now return to annotation of Theorem 3.3. It is easily understood that The-
orem 3.3 is derived from Theorem 3.2; the following proposition is key to the proof
of Theorem 3.3.

Proposition 3.1 (cf. [36]). Let X be an r.i. space over Ω. Then the following are
equivalent :

(i) If H ⊂ X and supx∈H ‖x‖X < ∞, then H is uniformly integrable.
(ii) If f = (fn) ∈ M is bounded in X, then f = (fn) is uniformly integrable.
(iii) X �= L1.

Recall that the theorem of de la Vallée Poussin asserts that if Φ(t)/t → ∞ as
t → ∞ and if H is a family of random variables which is bounded in LΦ, then H
is uniformly integrable (see [16, Théorème 22, p. 38]). Proposition 3.1 extends the
theorem of de la Vallée Poussin.

4. Summability methods and Tauberian theorems

In this section, we consider summability methods and Tauberian theorems for
martingales. Let {an}n∈Z+

be a sequence of positive numbers such that

An :=
n∑

k=0

ak → ∞ as n → ∞.
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For a process (that is, a sequence of random variables) η = (ηn)n∈Z+
, the weighted

average σ(η) = (σn(η))n∈Z+
is defined by

σn(η) =
1

An

n∑
k=0

akηk, n ∈ Z+.

It is clear that if η = (ηn) converges to η∞ in Lp, then σ(η) = (σn(η)) converges
to the same limit in Lp. However, η = (ηn) does not necessarily converge in
Lp when σ(η) = (σn(η)) converges in Lp. By using the result of Kazamaki and
Tsuchikura [31], we can deduce a Tauberian theorem for this summation method.
The main result of [31] asserts that a martingale f = (fn) is bounded in Lp if and
only if σ(f) = (σn(f)) is bounded in Lp; that is,

(4.1) sup
n∈Z+

‖σn(f)‖Lp
< ∞ ⇐⇒ sup

n∈Z+

‖fn‖Lp
< ∞.

It follows that if 1 < p < ∞ and if σ(f) = (σn(f)) converges in Lp, then f = (fn)
is bounded in Lp and converges in Lp.

There is an analogous theorem for a Banach function space X (see Theorem 4.2
below). It is a consequence of the following theorem, which extends (4.1).

Theorem 4.1 ([37]). Let X be a Banach function space over Ω, let F = (Fn) ∈ F,
and let En denote the conditional expectation operator E[ · |Fn] for each n ∈ Z+.
Suppose that En ∈ B(X) for all n ∈ Z+ and that C := supn∈Z+

‖En‖B(X) < ∞.

Then

(4.2) sup
n∈Z+

‖σn(f)‖X ≤ sup
n∈Z+

‖fn‖X ≤ C sup
n∈Z+

‖σn(f)‖X

for all f = (fn) ∈ M(F).

If X is an r.i. space, then ‖En‖B(X) = 1 for all n ∈ Z+, without depending on

F = (Fn) ∈ F (see [36, Lemma 2]). Hence (4.2) can be rewritten as

sup
n∈Z+

‖σn(f)‖X = sup
n∈Z+

‖fn‖X .

From Theorem 4.1 one can deduce the following:

Theorem 4.2 ([37]). Let X, F = (Fn), and En be as in Theorem 4.1. Suppose
that En ∈ B(X) for all n ∈ Z+ and supn∈Z+

‖En‖B(X) < ∞. Then the following

conditions on f = (fn) ∈ M(F) are equivalent :

(i) fn ∈ X for all n ∈ Z+, f∞ ∈ X, and lim
n→∞

‖fn − f∞‖X = 0.

(ii) σn(f) ∈ X for all n ∈ Z+, f∞ ∈ X, and lim
n→∞

‖σn(f)− f∞‖X = 0.

Combining Theorems 3.1 and 4.2 gives the following:

Theorem 4.3 ([37]). Let X, F = (Fn), and En be as in Theorem 4.1. Suppose
that En ∈ B(X) for all n ∈ Z+ and supn∈Z+

‖En‖B(X) < ∞. If X has absolutely

continuous norm, then the following conditions on f = (fn) ∈ M(F) are equivalent :

(i) f = (fn) is uniformly integrable and f∞ ∈ X.
(ii) fn ∈ X for all n ∈ Z+, f∞ ∈ X, and lim

n→∞
‖fn − f∞‖X = 0.

(iii) σn(f) ∈ X for all n ∈ Z+, f∞ ∈ X, and lim
n→∞

‖σn(f)− f∞‖X = 0.

We now consider a matrix summability method. Let (amn)
∞
m,n=0 be an infinite

(real) matrix satisfying the following conditions:
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• There is a positive constant K such that
∞∑

n=0
|amn| ≤ K for all m ∈ Z+.

• lim
m→∞

amn = 0 for each n ∈ Z+.

• lim
m→∞

∞∑
n=0

amn = 1.

Let {bn}n∈Z+
be a sequence of real numbers such that the series

∑∞
n=0 amnbn

converges for all m ∈ Z+. Then we define a sequence {Tbm}m∈Z+
by letting

Tbm =
∞∑

n=0

amnbn, m ∈ Z+.

If {bn} converges to a real number b, then {Tbm} converges to b (cf. [3], [73, p. 74]).
However, {bn} may not converge even if {Tbm} converges.

Fix a matrix (amn)
∞
m,n=0 satisfying the conditions above. For f = (fn) ∈ M, we

define a process Tf = (Tfm)m∈Z+
by

(4.3) Tfm =
∞∑

n=0

amnfn, m ∈ Z+,

provided the sum on the right-hand side converges a.s. for all m ∈ Z+. It is clear
that if f = (fn) ∈ M is bounded in L1, then we can define Tf = (Tfm). More
generally, we have the following:

Theorem 4.4 ([36]). Let X be an r.i. space over Ω. If f = (fn) ∈ M is bounded
in L1, then the following are equivalent :

(i) Tfm ∈ X for all m ∈ Z+ and supm∈Z+
‖Tfm‖X < ∞.

(ii) fn ∈ X for all n ∈ Z+ and supn∈Z+
‖fn‖X < ∞.

When these equivalent conditions hold, the series in (4.3) converges in X.

Suppose that Tf = (Tfm) converges in X. Then, by Theorem 4.4, f = (fn) is
bounded in X. It follows from Theorem 3.3 that if X has absolutely continuous
norm and X �= L1, then f = (fn) converges in X. Thus we have the following:

Theorem 4.5 (cf. [36]). Let X be an r.i. space over Ω, and let f = (fn) ∈ M
be bounded in L1. If X has absolutely continuous norm and if X �= L1, then the
following are equivalent :

(i) Tfm ∈ X for all m ∈ Z+, f∞ ∈ X, and lim
m→∞

‖Tfm − f∞‖X = 0.

(ii) fn ∈ X for all n ∈ Z+, f∞ ∈ X, and lim
n→∞

‖fn − f∞‖X = 0.

When these equivalent conditions hold, the series in (4.3) converges in X.

5. Martingale inequalities in r.i. spaces

In this section, we give an overview of results on martingale inequalities in an r.i.
space. For the classical martingale inequality mentioned in this section, see, e.g.,
[11], [17], [23], and [57].

First we consider the Doob inequality and the Burkholder-Davis-Gundy inequal-
ity. Recall that the Doob inequality (for uniformly integrable martingales) can be
written as

(5.1) ‖Mf‖Lp
≤ Cp ‖f∞‖Lp

, 1 < p ≤ ∞,
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where Cp is a constant depending only on p. Recall also that the Burkholder-Davis-
Gundy inequality (for arbitrary martingales) can be written as

(5.2) cp ‖Mf‖Lp
≤ ‖Sf‖Lp

≤ Cp ‖Mf‖Lp
, 1 ≤ p < ∞,

where cp and Cp are constants depending only on p.
A Doob type inequality and a Burkholder-Davis-Gundy type inequality in a

general function space were first studied by Antipa [1], Johnson-Schechtman [26],
and Novikov [65] (cf. [66]). They proved the following result.

Theorem A ([1], [65]; cf. [66]). Let Z be an r.i. space over I = (0, 1]. Then there is
a positive constant CZ such that for every uniformly integrable martingale f = (fn)
over I,

‖Mf‖Z ≤ CZ ‖f∞‖Z ,

if and only if βZ < 1.

Theorem B ([1], [26], [65]; cf. [66]). Let Z be an r.i. space over I = (0, 1]. Then
there are positive constants cZ and CZ such that for every martingale f = (fn)
over I,

cZ ‖Mf‖Z ≤ ‖Sf‖Z ≤ CZ ‖Mf‖Z ,

if and only if αZ > 0.

These theorems are proved by the four authors independently in the three papers
[1], [26], and [65]. The proofs in the three papers are different from one another.
The author of this article, Kikuchi, gave in [35] yet another proof of Theorems A
and B, which is also valid for an r.i. space over Ω. Moreover, the argument in [35]
revealed the close connection between the validity of some martingale inequalities
and Shimogaki’s theorem which concerns the boundedness of the linear operators
P and Q. Here the operators P and Q are defined for φ ∈ L0(I) by

(Pφ)(t) =
1

t

∫ t

0

φ(s) ds, t ∈ I,

(Qφ)(t) =

∫ 1

t

φ(s)

s
ds, t ∈ I,

provided the integrals exist for all t ∈ I. Thus the domain of P (resp., Q) is the
set of all measurable functions which are integrable over (0, t) (resp., (t, 1)) for each
t ∈ I. These operators are (formal) adjoint of each other.

Shimogaki [69] gave a characterization of an r.i. space X for which P ∈ B(X̂),

and a characterization of an r.i. space X for which Q ∈ B(X̂). His result is stated,
in terms of the Boyd indices, as follows.

Theorem C ([69]). Let X be an r.i. space over Ω. Then P ∈ B(X̂) if and only if

βX < 1, and Q ∈ B(X̂) if and only if αX > 0.

Under the setting of this article, the author’s result [35]3 can be stated as follows.

Theorem 5.1 (cf. [35]). Let X be an r.i. space over Ω. Then:

3In [35] continuous parameter martingales were considered. Although the results in [35] hold
for discrete parameter martingales, the proofs must be modified.
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(i) P ∈ B(X̂) if and only if there is a positive constant CX such that

‖Mf‖X ≤ CX ‖f∞‖X
for every uniformly integrable martingale f = (fn).

(ii) Q ∈ B(X̂) if and only if there are positive constants cX and CX such that

cX ‖Mf‖X ≤ ‖Sf‖X ≤ CX ‖Mf‖X
for every martingale f = (fn).

Theorem 5.1 extends Theorems A and B. In fact, in the statement, the proba-
bility space I is replaced by the general nonatomic probability space Ω, However,
this extension is not so important. We emphasize that Theorem 5.1 implies that
the combination of Theorems A and B is equivalent to Theorem C. That is, by
using Theorem 5.1, one can derive Theorem C from Theorems A and B, and one
can derive both of Theorems A and B from Theorem C.

Now we consider martingale inequalities in a Banach function space defined by
changing the probability measure. As before, let w be a positive random variable
such that E[w] = 1 and define a probability measure Pw by Pw(A) =

∫
A
w dP.

For each x ∈ L0(Ω), we let x∗
w denote the nonincreasing rearrangement of x with

respect to Pw, that is,

x∗
w(t) = inf

{
λ > 0: Pw(ω ∈ Ω: |x(ω)| > λ) ≤ t

}
, t ∈ I.

Let X be an r.i. space over (Ω,Σ,P). For each x ∈ L0, define X(Pw) by

X(Pw) = {x ∈ L0 : x
∗
w ∈ X̂},

and let

‖x‖X(Pw) = ‖x∗
w‖X̂

for x ∈ X(Pw). Then X(Pw) is an r.i. space over (Ω,Σ,Pw). Recall that the validity
of Doob type inequalities in X is equivalent to the boundedness of the operator P
on X̂. As for Doob type inequalities in X(Pw), there is a close connection between
the validity of such inequalities in X(Pw) and the boundedness of the operators
Pp (1 ≤ p < ∞) defined by

(5.3) (Ppφ)(t) =
1

t1/p

∫ t

0

φ(s)s1/p
ds

s
, t ∈ I.

Boyd [8] proved the following theorem on the boundedness of the operators Pp.

Theorem D ([8]). Let X be an r.i. space over Ω, and let 1 ≤ p < ∞. Then

Pp ∈ B(X̂) if and only if βX < 1/p.

For a proof of the theorem above, see [8] or [6, pp. 150–153]. Using this theorem,
we can prove the following:

Theorem 5.2 ([35]). Let X be an r.i. space over Ω, let w and X(Pw) be as above,
let F = (Fn) ∈ F, and let 1 < p < ∞.

(i) Suppose that w satisfies condition Ap(F) and that βX < 1/p. Then there
is a positive constant C such that

(5.4) ‖Mf‖X(Pw) ≤ C ‖f∞‖X(Pw)

for every uniformly integrable F-martingale f = (fn).
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(ii) Suppose that w satisfies condition Ap(F). If (5.4) holds for every uniformly
integrable F-martingale f = (fn), then βX ≤ 1/p.

On the one hand, Theorem 5.2 is derived from Theorem D; and, on the other
hand, by using the statement of Theorem 5.2, we can prove Theorem D (see [35,
Theorem 7]).

In addition to Doob type inequalities and Burkholder-Davis-Gundy type in-
equalities, we can obtain a lot of martingale inequalities in an r.i. space. To see
this, we need some preliminaries. First, define operators Qp (1 < p ≤ ∞) and
Rp (1 ≤ p < ∞) by:

(Qpφ)(t) =
1

t1/p

∫ 1

t

φ(s)s1/p
ds

s
, t ∈ I;

(Rpφ)(t) =

∫ 1

0

φ(s)s1/p

t1/p + s1/p
ds

s
, t ∈ I.

Of course, we let 1/p = 0 when p = ∞ (and hence, Q∞ = Q). It is easily checked
that if φ is a nonnegative measurable function on I, then

1

2

[
(Ppφ)(t) + (Qφ)(t)

]
≤ (Rpφ)(t) ≤ (Ppφ)(t) + (Qφ)(t)

for all t ∈ I. We have the following theorem concerning the boundedness of Qp and
Rp, which is analogous to Theorem D.

Theorem D′ (cf. [8]). Let X be an r.i. space over Ω.

(i) Suppose that 1 < p ≤ ∞. Then Qp ∈ B(X̂) if and only if 1/p < αX .

(ii) Suppose that 1 ≤ p < ∞. Then Rp ∈ B(X̂) if and only if 0 < αX and
βX < 1/p.

Let X be an r.i. space over Ω and let 1 ≤ p < ∞. We define function spaces
Hp(X), Hp(X), and K(X) by:

Hp(X) = {x ∈ L0 : Ppx
∗ ∈ X̂}, ‖x‖Hp(X) = ‖Ppx

∗‖X̂ ,

Hp(X) = {x ∈ L0 : Rpx
∗ ∈ X̂}, ‖x‖Hp(X) = ‖Rpx

∗‖X̂ ,

K(X) = {x ∈ L0 : Qx∗ ∈ X̂}, ‖x‖K(X) = ‖Qx∗‖X̂ .

One can show that Hp(X) is an r.i. space and Hp(X) ↪→ X, and that if the function

I � t �→ − log t ∈ [0,∞) belongs to X̂, then both Hp(X) and K(X) are r.i. spaces
and Hp(X) ↪→ K(X) ↪→ X (see [42, Lemma 2.3]). On the other hand, if the

function − log t does not belong to X̂, then Hp(X) = K(X) = {0}, where 0 denotes
the constant function with value 0. From Theorem D′, one sees that if βX < 1/p,
then Hp(X) = X, and that if 0 < αX and βX < 1/p, then Hp(X) = X.

With the notation above, we have the following:

Theorem 5.3 ([42]). Let X be an r.i. space over Ω, let F = (Fn) ∈ F, let γ be
a nonnegative random variable, let ξ = (ξn) be a nondecreasing process (that is,
ξn ≤ ξn+1 a.s. for all n ∈ Z+), and let ξ∞ = supn∈Z+

ξn.

(i) If 1 < p < ∞ and if the inequality

(5.5) E[(ξ∞ − ξn−1)
p |Fn] ≤ E[γp |Fn]

holds a.s. for all n ∈ Z+, then

(5.6) ‖ξ∞‖X ≤ ‖ξ∞‖H1(X) ≤ 2 ‖γ‖Hp(X) .
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(ii) If p = 1 and if (5.5) holds for all n ∈ Z+, then

(5.7) ‖ξ∞‖X ≤ ‖γ‖K(X) .

Moreover, if 0 < αX and βX < 1/p, then (5.6) implies that ‖ξ∞‖X ≤ C ‖γ‖X , and
if 0 < αX , then (5.7) implies that ‖ξ∞‖X ≤ C ‖γ‖X .

Various martingale inequalities are derived from Theorem 5.3. Let 1 ≤ p < ∞
and let F = (Fn) ∈ F. Given f = (fn) ∈ M(F), we let4

s(p)f =

{ ∞∑
n=0

E
[
|Δnf |p

∣∣Fn−1

]}1/p

,

and
m(p)f = sup

0≤n≤n′<∞
E
[
|fn′ |p

∣∣Fn

]1/p
.

An important case is when p = 2; there are many results on s(2)f . We call s(2)f
the conditioned square function of f = (fn). In this article, we write sf for s(2)f .

With the notation above, we have the following:

Theorem 5.4 ([42]). Let X be an r.i. space over Ω.

(i) If 2 ≤ p < ∞, then there is a positive constant Cp, depending only on p,
such that

(5.8)
∥∥s(p)f∥∥

X
≤ Cp ‖f∞‖Hp(X)

for every uniformly integrable martingale f = (fn).
If, in addition, 0 < αX and βX < 1/p, then the right-hand side of (5.8)

can be replaced by Cp,X ‖f∞‖X .
(ii) If 1 ≤ p < q < ∞, then there is a positive constant Cp,q, depending only

on p and q, such that

(5.9)
∥∥m(q)f

∥∥
X

≤ Cp,q ‖f∞‖Hp(X)

for every uniformly integrable martingale f = (fn).
If, in addition, 0 < αX and βX < 1/p, then the right-hand side of (5.9)

can be replaced by Cp,q,X ‖f∞‖X .

If we define an increasing process ξ = (ξn) by ξn = (
∑n+1

k=0 E[|Δkf |p |Fk−1])
1/p

and a random variable γ by γ = cp |f∞| with a suitable constant cp, we can prove
that (5.5) holds. This, together with Theorem 5.3, implies that (5.8) holds for every
uniformly integrable martingale f = (fn). In the same way, we can prove (5.9) by
using Theorem 5.3.

For some specific r.i. spaces X, we can give an explicit description of the spaces
Hp(X), Hp(X), and K(X). For example, if 1 ≤ p < ∞ and 0 ≤ a < ∞, then

(5.10) Hp(Lp,1(logL)a) = Hp(Lp,1(logL)a) = Lp,1(logL)a+1,
5

where Lp,q(logL)a (1 ≤ p < ∞, 1 ≤ q < ∞, −∞ < a < ∞) denotes the Lorentz-
Zygmund space consisting of those x ∈ L0 for which

‖x‖Lp,q(logL)a
:=

{∫ 1

0

[
t1/p(1− log t)ax∗(t)

]q dt

t

}1/q

< ∞.

4We adopt the convention that F−1 = {∅,Ω} for any F = (Fn) ∈ F.
5Equality (5.10) means that the spaces in this equality are the same as a set, and their norms

are equivalent.
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For details of Lorentz-Zygmund spaces, see [5]. From (5.8), (5.9), and (5.10), it
follows that ∥∥s(p)f∥∥

Lp,1(logL)a
≤ Cp,a ‖f∞‖Lp,1(logL)a+1

;∥∥m(q)f
∥∥
Lp,1(logL)a

≤ Cp,q,a ‖f∞‖Lp,1(logL)a+1
.

There are some other examples. Given a ∈ (0,∞) and x ∈ L0, we let

‖x‖Lexp:a
= sup

t∈I

1

t(1− log t)1/a

∫ t

0

x∗(s) ds = sup
t∈I

(Px∗)(t)

(1− log t)1/a

and we let Lexp:a denote the set of all x ∈ L0 such that ‖x‖Lexp:a
< ∞. One can

show that Lexp:a is an r.i. space, and that x ∈ Lexp:a if and only if exp(λ |x|a) ∈ L1

for some λ > 0. It is not hard to check that

K(Lexp:1) = Hp(Lexp:1) = L∞, 1 ≤ p < ∞;(5.11)

K(Lexp:a) = Hp(Lexp:a) = Lexp:(a/(1−a)), 1 ≤ p < ∞, 0 < a < 1.(5.12)

For details of these examples, see [42]. From (5.11), (5.12), and Theorem 5.4, it
follows that∥∥s(p)f∥∥

Lexp:a
≤ Cp,a ‖f∞‖Lexp:(a/(1−a))

, 1 ≤ p < ∞, 0 < a < 1;∥∥m(q)f
∥∥
Lexp:1

≤ Cq ‖f∞‖L∞
, 1 ≤ q < ∞.

Moreover, by using the conditional form of the Davis inequality (see [14]) and
Theorem 5.3, we have inequalities such as:

‖Mf‖Lexp:a
≤ C ‖Sf‖Lexp:(a/(1−a))

, 0 < a < 1;

‖Sf‖Lexp:1
≤ C ‖Mf‖L∞

.

6. Martingale inequalities in Banach function spaces

In the previous section, we focused on martingale inequalities in r.i. space. More
generally, we consider several inequalities in Banach function spaces in this section.
From the results in the previous section, we see that the validity of some martingale
inequalities in r.i. spaces does not depend on filtrations. In contrast, martingale
inequalities in a Banach function space which is not r.i., such as Lp(Pw), strongly
depend on filtrations. Thus, it is reasonable to expect that if a martingale inequality
in a Banach function space X holds without depending on filtrations, then X is r.i.
In fact, this is true in many cases.

We begin with Doob type inequalities. Let X be a Banach function space over
Ω. We say that X can be renormed so as to be r.i., if there exists a norm ||| · |||X on
X which is equivalent to the original norm ‖ · ‖X and with respect to which X is an
r.i. space. Let X be such a Banach function space, and suppose that βX < 1, where
βX stands for the upper Boyd index of the renormed space X. It then follows from
Theorems 5.1 and C that the inequality

|||Mf |||X ≤ CX |||f∞ |||X
holds for every uniformly integrable martingale f = (fn). Since the norms ‖ · ‖X
and ||| · |||X are equivalent, the inequality above can be rewritten as

(6.1) ‖Mf‖X ≤ CX ‖f∞‖X .
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The following theorem gives a complete characterization of a Banach function
space X for which (6.1) holds for every uniformly integrable martingale f = (fn).

Theorem 6.1 (cf. [32]6). Let X be a Banach function space over Ω. Then the
following are equivalent :

(i) There is a positive constant CX , depending only on X, such that (6.1) holds
for every uniformly integrable martingale f = (fn).

(ii) X can be renormed so as to be r.i. and βX < 1.

In the theorem above, the norm ||| · |||X with respect to which X is an r.i. space
is given by

|||x |||X = sup

{∫ 1

0

x∗(s) y∗(s) ds : y ∈ X ′, ‖y‖X′ ≤ 1

}
.

For details, see the proof of [45, Lemma 5.1]. To prove Theorem 6.1, one needs to
show that if (6.1) holds for every uniformly integrable martingale f = (fn), then
X can be renormed so as to be r.i. To do so, we can use the following result, which
was proved in a later study.

Proposition 6.1 ([43]). Let X be a Banach function space over Ω, and let S+ be
the set of all nonnegative simple random variables on Ω. Then the following are
equivalent :

(i) There is a positive constant C such that if x ∈ X and if A is a sub-σ-algebra
of Σ, then ∥∥E[x |A]

∥∥
X

≤ C ‖x‖X .

(ii) There is a positive constant C such that if x, y ∈ S+, if x � d y, and if
{ω ∈ Ω: x(ω) > 0} ∩ {ω ∈ Ω: y(ω) > 0} = ∅ a.s., then

‖x‖X ≤ C ‖y‖X .

(iii) X can be renormed so as to be r.i.

Let A be a sub-σ-algebra of Σ. Define F = (Fn) ∈ F by

(6.2) Fn =

{
A, n = 0,
Σ, n ≥ 1,

and define f = (fn) ∈ M(F) by fn = E[x |Fn] , n ∈ Z+. Then E[x |A] ≤ Mf a.s.,
and f∞ = x a.s. Applying (6.1) to this f = (fn), we see that the inequality in (i)
of Proposition 6.1 holds. Thus we conclude that if (6.1) holds for every uniformly
integrable martingale f = (fn), then X can be renormed so as to be r.i.

As for Burkholder-Davis-Gundy type inequalities, we have the following analogue
of Theorem 6.1.

Theorem 6.2 ([45]). Let X be a Banach function space over Ω. Then the following
are equivalent :

(i) There is a positive constant CX , depending only on X, such that

(6.3) sup
n∈Z+

‖fn‖X ≤ CX ‖Sf‖X

for every martingale f = (fn).

6In some papers by the author, a Banach function space which can be renormed so as to be
r.i. is merely said to be r.i.
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(ii) There is a positive constant CX , depending only on X, such that

‖Mf‖X ≤ CX ‖Sf‖X
for every martingale f = (fn).

(iii) X can be renormed so as to be r.i. and αX > 0.

In order to prove Theorem 6.2, as in the proof of Theorem 6.1, it is essential to
show that if (6.3) holds for every martingale f = (fn), then X can be renormed
so as to be r.i. However, the proof of this fact is somewhat complicated. As we
have seen above, it is easy to derive (i) of Proposition 6.1 from (6.1). However,
the author does not know how to derive (i) of Proposition 6.1 directly from (6.3).
Nevertheless, one can derive (ii) of Proposition 6.1 from (6.3). The author found
two ways to do so; a considerable effort is forced on both ways (cf. [45]).

We now consider Burkholder type inequalities. In 1966, Burkholder proved in
his excellent paper [10] that if 1 < p < ∞, then there are positive constants kp and
Kp, depending only on p, such that

kp ‖f∞‖Lp
≤ ‖Sf‖Lp

≤ Kp ‖f∞‖Lp

for every uniformly integrable martingale f = (fn).
In view of Theorems 6.1 and 6.2, and the result mentioned above, the following

theorem is just the expected one.

Theorem 6.3 ([38]). Let X be a Banach function space over Ω. Then the following
are equivalent :

(i) There are positive constants cX and CX , depending only on X, such that

(6.4) cX ‖f∞‖X ≤ ‖Sf‖X ≤ CX ‖f∞‖X
for every uniformly integrable martingale f = (fn).

(ii) X can be renormed so as to be r.i., and 0 < αX and βX < 1.

Using Theorems 6.1 and 6.2, one easily sees that (ii) implies (i). Moreover, one
easily sees also that if (i) holds, then X can be renormed so as to be r.i. However,
a somewhat complicated calculation is needed to show that if X can be renormed
so as to be r.i. and if (i) holds, then 0 < αX and βX < 1. For details, see [38].

As is well known, various martingale inequalities have been studied in a lot
of papers, and some of them are very important in martingale theory. Most of
martingale inequalities are inequalities for the Lp-norms of functionals defined on
spaces of martingales. Of course, it is an important topic to seek a characterization
of a Banach function space X such that a known martingale inequality in Lp holds
with Lp replaced by X. For more results on this topic, see [2], [40], [41], [43], [44],
[46]–[49], [51], and [52]. We give here an overview of results in [46], which are results
concerning some inequalities for the Doob decompositions of submartingales.

Let F = (Fn)n∈Z+
∈ F. Recall that a process h = (hn)n∈Z+

is said to be
F-predictable if each hn is Fn−1-measurable.7 We let ℘(F) denote the set of all
F-predictable processes h = (hn)n∈Z+

such that h0 = 0 a.s.
Let η = (ηn) be an F-submartingale; that is, each ηn is integrable Fn-measurable

random variable and E[ηn+1 |Fn] ≥ ηn a.s. for all n ∈ Z+. It is well known that
there exist g = (gn) ∈ M(F) and h = (hn) ∈ ℘(F) such that

ηn = gn + hn a.s. for all n ∈ Z+.

7Recall our convention that F−1 = {∅,Ω} for any F = (Fn) ∈ F.
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Such g = (gn) and h = (hn) are unique. It is easily seen that h = (hn) is a nonde-
creasing process. The above expression of η = (ηn) is called the Doob decomposition
of η = (ηn). In what follows, whenever we consider the Doob decomposition of a
submartingale, we will let g = (gn) be a martingale and let h = (hn) be a pre-
dictable process such that h0 = 0 a.s.

Let Φ: [0,∞) → [0,∞) be a Young function and let f = (fn) ∈ M(F). If
the composite random variables Φ(|fn|) ≡ Φ ◦ |fn| are integrable, then the process
Φ(|f |) := (Φ(|fn|)) is an F-submartingale and hence it is decomposed as

Φ(|fn|) = gn + hn a.s. for all n ∈ Z+.

Furthermore, from [64, Proposition VIII-1-4] one can deduce that if 1 ≤ p < ∞
and if Φ(Mf) ≡ Φ ◦Mf ∈ Lp, then h∞ = supn hn ∈ Lp and

‖h∞‖Lp
≤ p ‖Φ(Mf)‖Lp

.

The following theorem gives a characterization of a Banach function space X such
that the inequality above holds with Lp replaced by X.

Theorem 6.4 ([46]). Let X be a Banach function space over Ω, and let Φ be as
above. Given F = (Fn) ∈ F, let S(F) denote the set of all nonnegative F-submar-
tingales. Then the following are equivalent :

(i) There is a positive constant C such that if η = (ηn) ∈ S(F) is decomposed
as ηn = gn + hn a.s. for all n ∈ Z+, then

‖h∞‖X ≤ C sup
n∈Z+

‖ηn‖X .

(ii) There is a positive constant C such that if η = (ηn) ∈ S(F) is decomposed
as ηn = gn + hn a.s. for all n ∈ Z+, then

sup
n∈Z+

‖gn‖X ≤ C sup
n∈Z+

‖ηn‖X .

(iii) There is a positive constant C such that if f = (fn) ∈ M(F), if Φ(|fn|)
is integrable for all n ∈ Z+, and if Φ(|f |) = (Φ(|fn|)) is decomposed as
Φ(|fn|) = gn + hn a.s. for all n ∈ Z+, then

‖h∞‖X ≤ C ‖Φ(Mf)‖X .

(iv) There is a positive constant C such that if f = (fn) ∈ M(F), if Φ(|fn|)
is integrable for all n ∈ Z+, and if Φ(|f |) = (Φ(|fn|)) is decomposed as
Φ(|fn|) = gn + hn a.s. for all n ∈ Z+, then

sup
n∈Z+

‖gn‖X ≤ C ‖Φ(Mf)‖X .

(v) X can be renormed so as to be r.i. and αX > 0.

When these equivalent conditions hold, the constant C in each of (i)–(iv) depends
only on X.

Is it possible to find a characterization of a Banach function space X such that
the inequality in (iii) (or (iv)) holds with Mf replaced by Sf? Unfortunately the
author does not know a complete characterization of such a Banach function space.
However, under the assumption that Φ satisfies the Δ2-condition, the following
theorem gives a characterization of such a Banach function space.

Theorem 6.5 ([46]). Let X and Φ be as in Theorem 6.4.
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(i) Suppose that at least one of the following conditions are satisfied:
(a) There is a positive constant C such that if f = (fn) ∈ M(F), if

Φ(|fn|) is integrable for all n ∈ Z+, and if Φ(|f |) = (Φ(|fn|)) is de-
composed as Φ(|fn|) = gn + hn a.s., then

‖h∞‖X ≤ C ‖Φ(Sf)‖X .

(b) There is a positive constant C such that if f = (fn) ∈ M(F), if
Φ(|fn|) is integrable for all n ∈ Z+, and if Φ(|f |) = (Φ(|fn|)) is de-
composed as Φ(|fn|) = gn + hn a.s., then

sup
n∈Z+

‖gn‖X ≤ C ‖Φ(Sf)‖X .

Then X can be renormed so as to be r.i. and αX > 0.
(ii) Suppose that Φ satisfies the Δ2-condition; that is, there is a positive con-

stant c such that Φ(2t) ≤ cΦ(t) for all t ≥ 0. If X is renormed so as to be
r.i. and αX > 0, then both (a) and (b) hold with a constant C depending
only on X and Φ.

In order to prove Theorem 6.4 and (i) of Theorem 6.5, one can use the methods
of [38] and [45] (though some effort is forced). On the other hand, in order to prove
(ii) of Theorem 6.5, one needs the following:

Theorem 6.6 ([46]). Let X be an i.r. space over Ω such that αX > 0, and suppose
that a Young function Φ: [0,∞) → [0,∞) satisfies the Δ2-condition. Then there
are positive constants cX,Φ and CX,Φ such that

cX,Φ ‖Φ(Sf)‖X ≤ ‖Φ(Mf)‖X ≤ CX ‖Φ(Sf)‖X
for every martingale f = (fn).

Of course, Theorem 6.6 is an extension of Theorem B (Burkholder-Davis-Gundy
type inequality). According to [59, Theorems 3.2 and 4.2] (cf. [9]), a Young function
Φ satisfies the Δ∞

2 -condition if and only if αLΦ
> 0. Combining this fact with

Theorem B, one may think that the proof of Theorem 6.6 is easy. However it
is not so easy to prove Theorem 6.6. In fact, to prove it, one needs to utilize
several theorems whose proofs are not so easy, such as an interpolation theorem of
Astashkin and Maligranda [4] and a theorem of Cwikel [13] concerning a property
of interpolation spaces.

We close this section with an application of Theorems 6.4 and 6.5. Suppose that
f = (fn) ∈ M(F) is bounded in L2, and define a process h = (hn) by

h0 = 0, hn =

n∑
k=1

E
[
|Δkf |2

∣∣Fk−1

]
, n ∈ N.

Then h = (hn) ∈ ℘(F), and the process g = (gn) defined by gn = f2
n − hn, n ∈ Z+,

is an F-martingale. Thus the submartingale f2 = (f2
n) is decomposed as

f2
n = gn + hn a.s. for all n ∈ Z+.

Since h∞ = (sf)2 − E
[
f2
0

]
, we have the following theorem by using Theorems 6.4

and 6.5.

Theorem 6.7 ([46]). Let X be a Banach function space over Ω. Then the following
are equivalent :
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(i) There is a positive constant C such that∥∥(sf)2∥∥
X

≤ C sup
n∈Z+

∥∥f2
n

∥∥
X

for every martingale f = (fn) which is bounded in L2.
(ii) There is a positive constant C such that∥∥(sf)2∥∥

X
≤ C

∥∥(Mf)2
∥∥
X

for every martingale f = (fn) which is bounded in L2.
(iii) There is a positive constant C such that∥∥(sf)2∥∥

X
≤ C

∥∥(Sf)2∥∥
X

for every martingale f = (fn) which is bounded in L2.
(iv) X can be renormed so as to be r.i. and αX > 0.

When these equivalent conditions hold, the constant C in each of (i)–(iii) depends
only on X.

7. Weak type inequality in Banach function spaces

In this section, we give an overview of some weak type inequalities in Banach
function spaces. Recall that when 1 < p ≤ ∞ the Doob inequality (5.1) is valid,
and that when p = 1 it is not valid. On the other hand, the weak type inequality

(7.1) sup
λ>0

λP
(
ω ∈ Ω: (Mf)(ω) > λ

)1/p ≤ ‖f∞‖Lp

holds for every uniformly integrable martingale f = (fn), not only when 1 < p ≤ ∞
but also when p = 1. Our interest here is in extending this inequality.

We begin with introducing a notion of a weak space. Let X be a Banach function
space over Ω. For each x ∈ L0, let

‖x‖w-X = sup
λ>0

λ
∥∥1{ω∈Ω: |x(ω)|>λ}

∥∥
X
,

and define

w-X = {x ∈ L0 : ‖x‖w-X < ∞}.
For example, w-Lp coincides with Lp,∞ as a set (see [70, Lemma 3.8, p. 191]). It is
clear from the definition of w-X that if x ∈ X, then x ∈ w-X and ‖x‖w-X ≤ ‖x‖X .
It is also clear that ‖x‖w-X = 0 if and only if x = 0 a.s., and that if x ∈ w-X
and α ∈ R, then ‖αx‖w-X = |α| ‖x‖w-X . Although the functional ‖ · ‖w-X does not
satisfy the triangle inequality, we have

‖x+ y‖w-X ≤ 2(‖x‖w-X + ‖y‖w-X)

for all x, y ∈ w-X. That is, ‖ · ‖w-X is a quasi-norm; and hence there is a metric d
on w-X such that d(x, xn) → 0 as n → ∞ if and only if ‖x− xn‖w-X → 0 as n → ∞
(see [7, p. 59]). It is straightforward to check that w-X is complete with respect
to d. Thus w-X is a quasi-Banach space. In fact, w-X is a quasi-Banach function
space; that is, L∞ ↪→ w-X ↪→ L0, and w-X satisfies (B2) and (B3). Moreover, w-X
is a maximal quasi-Banach function space in the sense of [24].

Note that the weak type inequality (7.1) can be rewritten as

‖Mf‖w-Lp
≤ ‖f∞‖Lp

.
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Our aim is to give a characterization of a Banach function space X such that the
analogous inequality

(7.2) ‖Mf‖w-X ≤ C ‖f∞‖X
holds for every uniformly integrable martingale f = (fn). We begin with extending
the notion of fundamental function of an r.i. space. For each t ∈ [0, 1], let

Σ(t) = {A ∈ Σ : P(A) = t}

and define a function ϕX : [0, 1] → [0,∞) by

ϕX(t) = sup
{
‖1A‖X : A ∈ Σ(t)

}
, t ∈ [0, 1].

It is then clear that if X is r.i., then ϕX(t) = ϕX(t). One can easily check that
t ≤ ϕX(t)ϕX′(t) even when X is not r.i. Furthermore, according to [50, Lemma 1],
ϕX(t) is a quasi-concave function; that is,

• ϕX(t) = 0 if and only if t = 0.
• ϕX(t) is nondecreasing on [0, 1].
• ϕX(t)/t is nonincreasing on (0, 1].

It follows that the set of all x ∈ L0 such that

‖x‖M(ϕX) = sup
t∈I

ϕX(t)

t

∫ t

0

x∗(s) ds < ∞

forms an r.i. space over Ω (see [6, p. 69]); this r.i. space is denoted by M(ϕX).
By using the following theorem, we can deduce a characterization of a Banach

function space X such that (7.2) holds for every uniformly integrable martingale
f = (fn). In what follows, we say that a linear operator T is an L1–L∞-contraction
if T ∈ B(L1) ∩B(L∞) and max{‖T‖B(L1)

, ‖T‖B(L∞)} ≤ 1.

Theorem 7.1 ([50]). Let X be a Banach function space. The following are equiv-
alent :

(i) There is a positive constant C such that for all L1–L∞-contractions T and
all x ∈ X,

‖Tx‖w-X ≤ C ‖x‖X .

(ii) There is a positive constant C such that for all sub-σ-algebras A and all
x ∈ X, ∥∥E[x |A]

∥∥
w-X

≤ C ‖x‖X .

(iii) There is a positive constant C such that for all t ∈ [0, 1],

ϕX(t)ϕX′(t) ≤ Ct.

(iv) X ↪→ M(ϕX), that is, there is a positive constant C such that for all x ∈ X,

‖x‖M(ϕX) ≤ C ‖x‖X .

When these equivalent conditions hold, w-X coincides with the quasi-Banach space
M∗(ϕX) consisting of all x ∈ L0 such that

‖x‖M∗(ϕX) := sup
t∈I

[
ϕX(t) x∗(t)

]
< ∞,

and the quasi-norms of w-X and M∗(ϕX) are equivalent.
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Suppose that condition (ii) of Theorem 7.1 holds, and that f = (fn) is a uni-
formly integrable martingale. Let λ > 0 and define a stopping time τ by

τ (ω) = min
{
n ∈ Z+ : |fn(ω)| > λ

}
,

with the convention that min ∅ = ∞. Then{
ω ∈ Ω: (Mf)(ω) > λ

}
=

{
ω ∈ Ω: τ (ω) < ∞

}
∈ Fτ

and on this set, E[|f∞| |Fτ ] ≥ |fτ | > λ a.s. Since ‖1A‖w-X = ‖1A‖X for all A ∈ Σ,
(ii) of Theorem 7.1 implies that

λ
∥∥1{ω : (Mf)(ω)>λ}

∥∥
X

=
∥∥λ1{ω : τ(ω)<∞}

∥∥
w-X

≤
∥∥E[|f∞|

∣∣Fτ

]∥∥
w-X

≤ C ‖f∞‖X .

Since λ > 0 is arbitrary, (7.2) follows.
Conversely, suppose that (7.2) holds for every uniformly integrable martingale

f = (fn). Let A be a sub-σ-algebra and let x ∈ X. Define F = (Fn) ∈ F by
(6.2) and let f = (fn) be the martingale defined by fn = E[x |Fn], n ∈ Z+. Then,
E[x |A] ≤ Mf a.s., and hence by (7.2),∥∥E[x |A]

∥∥
w-X

≤ ‖Mf‖w-X ≤ C ‖f∞‖X = C ‖x‖X ,

that is, (ii) of Theorem 7.1 holds. Thus we have the following:

Theorem 7.2 ([50]). Let X be a Banach function space over Ω. Then inequal-
ity (7.2) holds for every uniformly integrable martingale f = (fn) if and only if
equivalent conditions (i)–(iv) in Theorem 7.1 hold.

If X is r.i., then ϕX(t)ϕX′(t) = t for all t ∈ [0, 1], and hence (7.2) holds for every
uniformly integrable martingale f = (fn). However, an example in [50, Section 5]
shows that X may not be renormed so as to be r.i., even if (7.2) holds for every
uniformly integrable martingale f = (fn).

On the other hand, as the following theorem shows, when X is a weighted Or-
licz space (or weighted Lebesgue space), (7.2) holds for every uniformly integrable
martingale f = (fn) if and only if X can be renormed so as to be r.i.

Let w be a strictly positive random variable such that E[w] = 1 and let Pw be
the probability measure defined by Pw(A) =

∫
A
w dP. With this notation, we have

the following:

Theorem 7.3 ([50]). Let Φ: [0,∞) → [0,∞) be a Young function satisfying the
Δ∞

2 -condition. Then the following are equivalent :

(i) There is a positive constant C such that for all sub-σ-algebras A and all
x ∈ LΦ(Pw), ∥∥E[x |A]

∥∥
w-LΦ(Pw)

≤ C ‖x‖LΦ(Pw) .

(ii) There are positive constants a, b such that a ≤ w ≤ b a.s.
(iii) LΦ(Pw) is a Banach function space over (Ω,Σ,P) and it can be renormed

so as to be r.i. with respect to P.

In the theorem above, the assumption that Φ satisfies the Δ∞
2 -condition is es-

sential. See [50, Section 5] for details.
As we have seen above, martingale theory is useful for analyzing the structure

of Banach function spaces. The author is glad if the results in this article give a
new understanding of the relation between martingale theory and the structure of
Banach function spaces.
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8. Postscript

Although martingales are indispensable tools in probability theory, a lot of re-
searchers of probability theory are not interested in martingale theory itself. Espe-
cially in Japan, very few researchers have been studying martingale theory itself.
Recently, however, some researchers of harmonic analysis in Japan came to pay
attention to martingale theory. In fact, studies of martingales from a viewpoint of
harmonic analysis have already begun. For instance, Miyamoto-Nakai-Sadasue [61]
and Nakai-Sadasue [63] are such studies. The author expects the progress of further
new studies.
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