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OPERATOR THEORY IN THE COMPLEX

GINZBURG-LANDAU EQUATION

NOBORU OKAZAWA

Abstract. Strong well-posedness for the complex Ginzburg-Landau equation

∂u/∂t+ (λ+ i α)(−Δ)u+ (κ+ i β)|u|q−2u− γu = 0

is discussed from the viewpoint of operator theory. It is concluded that the
solution operators from L2(Ω), Ω ⊂ RN , into itself form a semigroup of quasi-

contractions when κ−1|β| ≤ c−1
q := 2

√
q − 1/|q−2| (without any upper bound

on q ≥ 2), and a non-contraction semigroup of Lipschitz operators when

κ−1|β| > c−1
q (2 ≤ q ≤ 2 + 4/N). The assertion is proved by energy meth-

ods based on monotonicity methods. Also compactness methods are valid for
the Cauchy problem when the initial value belongs to H1(RN ) ∩ Lq(RN ) in

addition to the restriction (α/λ, β/κ) ∈ CGL(c−1
q ); in this case solutions are

unique under sub-critical condition: q ∈ [2, 2 + 4/(N − 2)+].

1. Preface

The complex Ginzburg-Landau equation is one of non-linear partial differential
equations of parabolic type (in what follows, it is abbreviated as a CGL equation).
The theme of this article is the Cauchy problem and initial-boundary value problem
for a CGL equation:

(CGL)Ω

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
+ (λ+ i α)(−Δ)u+ (κ+ i β)|u|q−2u− γu = 0 on Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω.

Here Ω denotes a (bounded or unbounded) domain in RN (N ∈ N). The boundary
∂Ω is assumed to be reasonable in the sense that the Laplacian −Δ in the equation
together with its boundary condition induces a selfadjoint realization S in L2(Ω),
with domain D(S) = H1

0 (Ω) ∩ H2(Ω) (cf.Miyajima [36, Remark 11.17]). Besides,
since i =

√
−1, we have to notice two complex coefficients in front of the spatial-

derivative and non-linear terms of the CGL equation. This is reflected in the
letter “C” in the abbreviated symbol of the equation (for “GL” which comes from
the two founders’ names of the theory of superconductivity; cf. Jimbo-Morita [19]).
Therefore, the unknown u becomes a complex-valued function of (x, t) ∈ Ω× [0,∞).
As for the real-parts of those coefficients we assume that λ, κ ∈ R+ := (0,∞). The
rest of the parameters are also constants such that α, β, γ ∈ R, and q ∈ [2,∞).
First, since λ > 0, the CGL equation is regarded as one of parabolic type, however,
the available tools are restricted because it is usually dealt with in complex L2-space
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(for an aspect of complex-valuedness see Cazenave-Dickstein-Weissler [10]). Second,
since κ > 0, it is expected that such a non-linearity yields global solvability of
problem (CGL)Ω. That is, the above-mentioned assumption simplifies the problem.
Nevertheless, the unrestricted exponent q of the non-linear term and large values
of |β| are not so simply dealt with.

The purpose of this article is to give a survey focused on an operator-theoretic
approach to the strong well-posedness of (CGL)Ω as one of initial value prob-
lems for (semilinear) evolution equations in complex L2-space. Because of the
complex coefficient in front of the non-linear term we have to deal with not only
semigroups of (quasi-)contractions but also non-contraction semigroups of (locally)
Lipschitz operators as solution operators mapping L2 into itself. Unfortunately,
the generation theorem for such a class of non-contraction semigroups, correspond-
ing to the Hille -Yosida theorem, is not yet known. Accordingly, we employ so-
called energy methods based on monotonicity (accretivity) methods instead of the
unfinished generation theorem to prove the strong well-posedness of (CGL)Ω in
L2. Sometimes compactness methods are also useful, but an additional restric-
tion is imposed on the initial values. It is possible to transform (CGL)Ω into
an integral equation by using the semigroup {e(λ+iα)tΔ; t ≥ 0}; however, here we
do not employ such a device though it is very popular in the general theory of
semilinear evolution equations (this is the main theme of a book by Ogawa [37]
published recently). The substitutive approximate problem is constructed by re-
placing the m-sectorial operator u �→ |u|q−2u in L2 induced from the non-linear
term of the CGL equation with the family of its Yosida approximations. That is,
accretivity methods are essentially methods of Yosida approximation which ensure
the global solvability of the approximate problem.

Physicists say that the CGL equation has a meaning of an amplitude equation
derived by “contraction” from fundamental systems of equations describing physical
phenomena. Y. Kuramoto reported in [25] his experience around 1974 to derive the
CGL equation as a contraction of a certain system of reaction-diffusion equations.
At that time it was the dawn of non-linear science so that the name CGL equation
had not yet been fixed. That is, CGL equation is about forty years old. Incidentally,
it was around 1995 when the name complex Ginzburg-Landau equation was fixed
in mathematical papers. At that time the author started his study of the well-
posedness. In fact, the name Ginzburg-Landau equation without “complex” was
used in Temam [60] and Yang [64] (cf. also Unai-Okazawa [62]), while “complex” was
added to the titles in Ginibre-Velo [14], [15] and Levermore-Oliver [26], [27].

Before discussing (CGL)Ω there is a simpler problem worth mentioning:

(NCGL)Ω

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
− iΔu+ |u|q−2u = 0 on Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω

because the same accretivity methods apply (the study of its strong solvability
goes back to Pecher-von Wahl [54] and Shigeta [57]). From an operator-theoretic
viewpoint (NCGL)Ω plays the role of a model problem to explain the validity
of the non-linear Hille -Yosida theorem in a complex Hilbert space. It took the
keen eyes of Ghoussoub [12] to call (NCGL)Ω the non-diffusive complex Ginzburg-
Landau equation though the linear terms of the equation in (NCGL)Ω are the
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same as those in the non-linear Schrödinger equation which was reflected in the
titles in [54] and [57]. Here “nondiffusive” means that there is no smoothing effect
of solution operators on initial values. But its parabolic regularization is possible
if u0 ∈ H2(Ω) ∩H1

0 (Ω) ∩ L2(q−1)(Ω). In fact, a solution u(·) to (NCGL)Ω is given
as the limit of a sequence {un(·)} of solutions to (CGL)Ω with λ = n−1 (n ∈ N),
α = 1 = κ, and β = 0 = γ: ‖u(t)− un(t)‖L2 ≤ (t/2n)1/2‖∇u0‖L2 (cf. [45, Theorem
1.3]).

Besides, since we have assumed that λ, κ ∈ R+ in (CGL)Ω, the following
problem for the non-linear Schrödinger equation:

(NLS)Ω

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
− iΔu+ i|u|q−2u = 0 on Ω× (0,∞),

u = 0 on ∂Ω× (0,∞),

u(x, 0) = u0(x), x ∈ Ω,

is not a particular case of (CGL)Ω, however, the transition from (CGL)Ω to
(NLS)Ω is quite challenging as a singular perturbation problem:

(1.1) (NLS)Ω = lim
λ↓0, κ↓0

γ→0

(CGL)Ω.

In particular, as for the convergence in (1.1) where Ω = RN , there was rapid
progress of the study in the early 2000s (cf.Machihara-Nakamura [29], Ogawa-
Yokota [38]). In this article we do not pay attention to the detailed properties of
solutions of CGL or NCGL-like equations such as (1.1) and asymptotic behaviors
(cf.Hayashi-Kaikina-Naumkin [17], Kita-Shimomura [21]). The literature in those
areas will be found in the bibliography in [17], [21], [29], [38].

The study of the existence of solutions to (CGL)Ω started in [60], [64] at the end
of the 1980s and then through [14], [15], [26], and [27] in the middle of the 1990s
it arrives at Okazawa-Yokota [47] in which the smoothing effect was first shown
(under unsatisfactory restriction κ−1|β| ≤ 2

√
q − 1/(q − 2)). At that moment it

was recognized that the solution operators to (CGL)Ω formed quasi-contraction
semigroups. After Okazawa-Yokota [48] a more general class of (locally) Lipschitz
semigroups entered the stage. The increase of the argument (or the ratio |β|/κ)
of coefficient κ+ iβ results in the change of classes of semigroups from contractive
ones to non-contractive. This happens also in the case of (C0) semigroups of linear
operators (see Metafune-Okazawa-Sobajima-Yokota [34]). The progress motivated
the group of Y. Kobayashi, N. Tanaka and T. Matsumoto to publish a series of
research papers on (CGL)Ω (cf. [22], [31]–[33]); in particular, they dealt with Lp-
theory (p �= 2) in [32], [33]. Before noticing the applicability to (CGL)Ω, they
aimed for the construction of the general theory of (locally) Lipschitz semigroups
(cf. [23], [24]) in connection with hyperbolic systems of conservation laws. Besides,
it is pointed out by Ghoussoub [13] that one of general theories in the calculus of
variations can also be applied to (CGL)Ω. In spite of their contribution fairly
decisive results on (CGL)Ω seem to be derived by employing the notion of sub-
differential operators in a complex Hilbert space. All results in this direction are
put together in Okazawa-Yokota [49] and Clément-Okazawa-Sobajima-Yokota [11].
The present article is a reconstruction of the related results around [49], [11] in a
form to extract the essence.

The contents of this article are stated as follows. Section 2 is concerned with
(NCGL)Ω. Theorem3.1 (I), (II) in Section 3 are the main theorem for (CGL)Ω. In
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Section 3 the proof of Theorem3.1 (I) is outlined in a form to derive the smoothing
effect on initial values in addition to the reasoning based on what is given in Section
2. In Section 4 an abstract theorem is introduced to prove Theorem3.1 (II). In
Section 5 compactness methods are applied to (CGL)RN . Several remarks are in
order in Section 6.

2. Non-diffusive complex Ginzburg-Landau equation

We solve problem (NCGL)Ω by regarding the unknown u(x, t) as a function
u(t) defined on the time inverval [0,∞) with values in the complex Hilbert space
X := L2 = L2(Ω); note that X is a space of functions depending only on x. When
we write just u(t), we mean that u(t) ∈ X, that is, the function x �→ u(x, t). In
this way (NCGL)Ω is formulated as one of the abstract Cauchy problems (ACP):

(ACP)00

⎧⎨
⎩

du

dt
+ (iS +B)u(t) = 0 a.e. on (0,∞),

u(0) = u0.

Here the operators S and B with domains and ranges in X = L2 are defined as
follows:

(2.1)

{
Su := −Δu, D(S) := H1

0 (Ω) ∩H2(Ω),

Bu := |u|q−2u, D(B) := L2(q−1)(Ω) ∩ L2(Ω).

Of great importance are the non-negative selfadjointness of S and m-sectoriality
of B (the term “sectorial” is, for example, employed in a book by Goldstein [16]).
The solvability of (NCGL)Ω is reduced to the decision of the m-accretivity of
iS+B in (ACP)00. In fact, the non-linear Hille -Yosida theorem is applied to such
kind of (ACP); the theorem in Hilbert space is sometimes called the Komura-Kato
theorem (see Showalter [58, Section IV.3]) as a particular case of the Crandall-
Liggett theorem in general Banach space (cf. Brezis [4], Miyadera [35], Barbu [3]).
Thus we are led to the next

Theorem 2.1 (cf. [45]). Let q ≥ 2. Then for every v0 ∈ H2(Ω)∩H1
0 (Ω)∩L2(q−1)(Ω)

there exists a unique strong solution v(·) ∈ C([0,∞); L2(Ω)) to (NCGL)Ω belong-
ing to the following class:

v(·) ∈ C0,1([0,∞); L2(Ω)) ∩ C0,1/2([0,∞); H1
0 (Ω)) ∩ C0,1/q([0,∞); Lq(Ω)),

(d/dt)v(·), Δv(·), |v|q−2v(·) ∈ L∞(0,∞; L2(Ω)).

Define the family {U(t); t ≥ 0} of solution operators by U(t)v0 := v(t). Then

(2.2) ‖U(t)v0 − U(t)w0‖L2 ≤ ‖v0 − w0‖L2 , v0, w0 ∈ H2 ∩H1
0 ∩ L2(q−1).

Consequently, {U(t); t ≥ 0} can be extended to a contraction semigroup on L2(Ω).

The symbols of function spaces in Theorem 2.1 are standard (see, e.g., [5], [36]).
Simply speaking, f ∈ Lp = Lp(Ω) maens that |f |p is integrable over Ω, while
g ∈ Hk = Hk(Ω) (k = 1, 2) maens that g is a function over Ω whose (distributional)
j-th derivatives belong to L2 (0 ≤ j ≤ k). Since H1

0 = H1
0 (Ω) is nothing but the

closure of C∞
0 (Ω)(⊂ H1(Ω)) with respect to the norm of H1(Ω), u ∈ H1

0 (Ω) implies
that the boundary condition, u = 0 on ∂Ω, in (CGL)Ω is reflected in the definition
of domain D(S).
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Remark 2.2 (Separation property of iS+B). Put qN := (N+2)/(N−2) for N ≥ 3
(cf. [54]). Then the characterization of the domain D(iS + B) is divided into two
cases depending on the exponent r := q − 1 of non-linearity:

D(iS +B) =

{
D(S) ⊂ D(B), r ≤ qN ,

D(S) ∩D(B), r > qN .

That is, when r ≤ qN , iS + B is regarded as a linear operator iS with relatively
bounded non-linear perturbation B (cf. [57]). But both cases are unified as

(2.3) ‖Su‖2L2 + ‖Bu‖2L2 ≤ r‖(iS +B)u‖2L2 , u ∈ D(S) ∩D(B),

which may be referred to as the separation property of iS + B; this term is
borrowed from that in the domain characterization of Schrödinger operators (see
Section 5).

First it will be desirable to make sure of the m-accretivity of B in (2.1). Namely,
the accretivity of B and its maximality are respectively described as
Re (Bu−Bv, u− v)L2 ≥ 0 (u, v ∈ D(B)) and the range condition: R(1 +B) = L2

(⇔ R(1+εB) = L2 (ε > 0)). This concludes that 1+εB is bijective. In fact, the ac-
cretivity of B implies its injectivity: ‖u−v‖2L2 ≤ Re ((1+εB)u−(1+εB)v, u−v)L2

(ε > 0). More precisely, it should be emphasized that the accretivity of B is re-
placed with its sectoriality, that is, there is a constant c ≥ 0 such that

|Im (Bu−Bv, u− v)L2 | ≤ cRe (Bu−Bv, u− v)L2 , u, v ∈ D(B),

where c is exactly given by (2.9) below. Actually, the key word in Proof of The-
orem2.1 is the sectoriality or sectorial-valuedness the notion of which was first
introduced by Kato [20, SectionV.3.10] for linear operators and then extended to
non-linear operators in [62] and [47] (for the second example see Remark 2.7 below).

As a beginning of Proof of Theorem 2.1 we now introduce the realization of
the Dirichlet-Laplace operator in Lq = Lq(Ω):

Aq := −Δ, D(Aq) := W 1,q
0 (Ω) ∩W 2,q(Ω), 1 < q < ∞.

Then Aq becomes m-sectorial in the sense of Lq (Ouhabaz [52, Theorem 3.9]):

(2.4)
|Im 〈Aqu, Fq(u)〉Lq,Lq′ |
Re 〈Aqu, Fq(u)〉Lq,Lq′

≤ cq :=
|q − 2|
2
√
q − 1

, 0 �= u ∈ D(Aq).

Here we denote by Fq the duality mapping from Lq to Lq ′
: Fq(u) := |u|q−2u

(1 < q < ∞), where q ′ is the Hölder conjugate of q. The constant cq in (2.4)
for the Laplacian was found by Henry [18, p.32], but the property (2.4) is also
shared by elliptic operators in divergence form (cf.Okazawa [41]). See also Bakry [2],
Liskevich-Perelmuter [28] for the class of (C0) semigroups whose negative infinitesi-
mal generators satisfy (2.4). In this connection we consider the family {Aq,ε; ε > 0}
of Yosida approximations of Aq

(2.5) Aq,ε := Aq(1 + εAq)
−1 = ε−1[1− (1 + εAq)

−1] ∈ B(Lq), ε > 0.

Here B(Lq) denotes the set of all bounded linear operators on Lq. The term “ap-
proximation” reflects the fact that ‖Aqu − Aq,εu‖ = ‖[1 − (1 + εAq)

−1]Aqu‖ → 0
(ε ↓ 0) for every u ∈ D(Aq). Then the sectoriality, the key in this section, is
summarized as follows:
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Lemma 2.3 (Sectoriality 1). Let Aq,ε and Fq be as defined above. Then for v,
w ∈ Lq,

|Im 〈v − w,Fq(v)− Fq(w)〉Lq,Lq ′ | ≤ cqRe 〈v − w,Fq(v)− Fq(w)〉Lq,Lq ′ ,(2.6)

|Im 〈Aq,εv, Fq(v)〉Lq,Lq′ | ≤ cqRe 〈Aq,εv, Fq(v)〉Lq,Lq′ .(2.7)

In fact, let X be a Hilbert space with inner product (·, ·) and norm ‖ · ‖. Then
we have

(2.8)

∣∣Im(‖z‖q−2z − ‖w‖q−2w, z − w)
∣∣

Re(‖z‖q−2z − ‖w‖q−2w, z − w)
≤ cq, z, w ∈ X (z �= w), 1 < q < ∞.

This inequality was first established by Liskevich-Perelmuter [28] when X = C and
‖ · ‖ = | · |, and then extended to the general case in [47, Lemma 2.1] with a
fairly simplified proof. Now (2.6) is derived by a computation based on (2.8) with
X = C. Next, to prove (2.7) it suffices to note that Im 〈Aq,εv, Fq(v)〉Lq,Lq′ can be
decomposed as

Im 〈Aq,εv, Fq(v)〉Lq,Lq′

= ε−1Im 〈v − (1 + εAq)
−1v, Fq(v)− Fq((1 + εAq)

−1v)〉Lq,Lq′

+ Im 〈Aq(1 + εAq)
−1v, Fq((1 + εAq)

−1v)〉Lq,Lq′

by virtue of (2.5) and the definition of Fq. The first term on the right-hand side
is estimated by (2.6) with w := (1 + εAq)

−1v ∈ Lq, while the second term on the
right-hand side is estimated by (2.4) with u := (1+εAq)

−1v ∈ D(Aq). This finishes
the proof.

Lemma 2.4 (Sectoriality 2). Let S and B be as defined in (2.1). Let {Sε; ε >
0} = {A2,ε; ε > 0} denote the family of Yosida approximations of S = A2. Then
the inequalities in Lemma2.3 are respectively translated into those in L2:

|Im (Bu−Bv, u− v)L2 | ≤ cqRe (Bu−Bv, u− v)L2 , u, v ∈ D(B),(2.9)

|Im (Sεv,Bv)L2 | ≤ cqRe (Sεv,Bv)L2 , v ∈ D(B), ε > 0.(2.10)

Here cq is exactly the sectoriality constant of B and its Yosida approximation:

(2.11) |Im (Bεu−Bεv, u− v)L2 | ≤ cqRe (Bεu−Bεv, u− v)L2 , u, v ∈ D(B);

note that Bε := ε−1[1 − (1 + εB)−1] (ε > 0) is well defined also for a non-linear
m-sectorial operator B.

In fact, when u, v ∈ D(B), we have the equality

(Bu−Bv, u− v)L2 = 〈u− v, Fq(u)− Fq(v)〉Lq,Lq ′ (q ≥ 2).

Since the Cauchy-Schwarz inequality applies to give

(2.12) D(B) = L2 ∩ L2(q−1) ⊂ L2 ∩ Lq (q ≥ 2),

it suffices to note that Bu = Fq(u) ∈ L2 ∩ Lq ′
when u ∈ D(B). In this way we

can show that B has the sectoriality (2.9) in L2 which is a property very close
to the non-negative selfadjointness (when q = 2). Because the description on the
sectoriality is already so long, the readers are referred to [45, Lemma 3.1] for the
maximality.

In the same way we can prove (2.10). In fact, it is easy to see that

(Sεv,Bv)L2 = (A2,εv,Bv)L2 = 〈Aq,εv, Fq(v)〉Lq,Lq′ ∀ v ∈ D(B).
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Here (2.12) and (2.5) are again useful. On the one hand, we have

(1 + εS)−1v = (1 + εAq)
−1v ⇒ Sεv = Aq,εv ∈ L2 ∩ Lq ∀ v ∈ D(B) ⊂ L2 ∩ Lq.

On the other hand, we have Bv = |v|q−2v = Fq(v) ∈ L2 ∩ Lq ′
for v ∈ D(B).

The inequality (2.10) is connected with the maximality of iS + B through the
separation property of iSε + B which is now stated as a corollary. Incidentally, it
seems to be natural to regard iS +B as the sum of mutually even operators.

Corollary 2.5 ([45, Proof of Theorem 2.3]). Let S and B be as defined in (2.1).
Then

(2.13) ‖Sεv‖2L2 + ‖Bv‖2L2 ≤ (q − 1)‖(iSε +B)v‖2L2 , v ∈ D(B), ε > 0.

Thus one can get (2.3) by letting ε ↓ 0 in (2.13) with v = u ∈ D(S) ∩D(B).

In this way we have finished the preparation to show the m-accretivity of iS+B.
Since S is non-negative selfadjoint, the accretivity of iS+B follows easily from (2.9):

Re ((iS +B)u− (iS +B)v, u− v)L2 = Re (Bu−Bv, u− v)L2 ≥ 0.

It remains to prove its maximality: R(1 + iS + B) = L2. To this end we consider
a family {uε; ε > 0} of solutions of approximate equations

(2.14) uε + iSεuε +Buε = f ∈ L2
(
⇔ R(1 + iSε +B) = L2

)
, ε > 0.

For the solvability of (2.14) we can simply modify the reasoning in the linear case
as given by Brezis [5, Proposition VII.1]. Besides, f ∈ R(1 + iS + B) if and only
if ‖Sεuε‖L2 is bounded as ε ↓ 0 (see Brezis-Crandall-Pazy [6]). (2.13) is essential
here. In fact, rewriting (2.14) as (iSε + B)uε = f − uε, we see from (2.13) with
v := uε that

‖Sεuε‖L2 ≤
√
q − 1‖f − uε‖L2 .

Therefore, the boundedness of ‖Sεuε‖L2 is replaced with that of ‖uε‖L2 which is
guaranteed by the fact that D(S) ∩D(B) �= ∅. That is, it is revealed in [45] that
the solvability of (NCGL)Ω is closely connected with sectoriality of −Δ in Lq

(see (2.4)). Once the structure of the proof is clear, it is possible to modify the
abstract theory in a form to be applied to the pair of S = −Δ and Bu = |u|q−2u,
respectively, replaced with an elliptic operator in divergence form and non-linearity
of non-power type (see Section 6.2).

Remark 2.6 (The relation between Sλ and Bε). To deal with (CGL)Ω in the sub-
sequent sections we shall employ conditions of the form

(2.15) |Im (Su,Bεu)L2 | ≤ cqRe (Su,Bεu)L2 , u ∈ D(S), ε > 0

instead of (2.10). Here we want to show that (2.10) is equivalent to (2.15). To this
end, it suffices to show that (2.10) implies

(2.16) |Im (Sλw,Bεw)L2 | ≤ cqRe (Sλw,Bεw)L2 , w ∈ L2(Ω), λ > 0, ε > 0.

Here {Sλ; λ > 0} denotes the family of Yosida approximations of S. In fact, we
have (2.15) by letting λ ↓ 0 in (2.16) with w = u ∈ D(S). It is an advantage that
there is nothing to care about the domains of S and B in (2.16). Now let w ∈ L2(Ω).
Then, since Bε = B(1 + εB)−1 (ε > 0), Im (Sλw,Bεw)L2 is decomposed as

Im (Sλw,Bεw)L2 = ε−1Im (Sλw − Sλ(1 + εB)−1w,w − (1 + εB)−1w)L2

+ Im (Sλ(1 + εB)−1w,B(1 + εB)−1w)L2 .
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The first term on the right-hand side vanishes by virtue of the selfadjointness of
Sλ. Applying (2.10) to the second term on the right-hand side and then using the
non-negativity of Sλ, we can obtain (2.15):

|Im (Sλw,Bεw)L2 | ≤ cqRe (Sλ(1 + εB)−1w,B(1 + εB)−1w)L2

+
cq
ε
Re (Sλw − Sλ(1 + εB)−1w,w − (1 + εB)−1w)L2

= cqRe (Sλ(1 + εB)−1w,Bεw)L2

+ cqRe (Sλw − Sλ(1 + εB)−1w,Bεw)L2

= cqRe (Sλw,Bεw)L2 .

Conversely, we can employ (2.11) to come back to (2.16) from (2.15).

Remark 2.7 (cf. [47]). Another example of a non-linear m-sectorial operator is given
by the p-Laplacian −Δp (p ∈ [2,∞)), with Dirichlet boundary condition, in L2(Ω),
where Ω is a bounded domain. In fact, integration by parts yields

((−Δp)u− (−Δp)v, u− v)L2 = (|∇u|p−2∇u− |∇v|p−2∇v,∇u−∇v)L2 .

Therefore, it follows from (2.8) with X = CN and q = p that for u, v ∈ D(Δp),

|Im ((−Δp)u− (−Δp)v, u− v)L2 | ≤ cp Re ((−Δp)u− (−Δp)v, u− v)L2 ;

note that −Δp is realized as a sub-differential of convex function ϕp(u) :=
1
p‖∇u‖pLp

with effective domain D(ϕp) := W 1,p
0 (Ω) (for the definition of sub-differentials see

Section 4).

3. Complex Ginzburg-Landau equation (1) accretivity methods

The result on (CGL)Ω with u0 ∈ L2 is stated in [47] and [49]. The role of
the sectoriality constant cq in these works is stated as follows. The mapping u �→
(κ+iβ)|u|q−2u defines an accretive operator when (I) κ−1|β| ≤ c−1

q , but it does not

when (II) κ−1|β| > c−1
q . This leads to the decision of the classes of semigroups to

which solution operators belong. Moreover, there is a big difference between these
two cases. When κ−1|β| ≤ c−1

q , there is no upper restriction on the exponent q − 1

of non-linear term, but when κ−1|β| > c−1
q , it is restricted by a constant depending

on the spatial dimension: 1 ≤ q − 1 ≤ 1 + 4/N . Thus the result is devided into
these two cases.

Theorem 3.1. Let cq :=
q − 2

2
√
q − 1

(q ≥ 2) in addition to N ∈ N, λ, κ ∈ R+ and

α, β, γ ∈ R.
(I) (Accretive non-linearity). Impose restriction κ−1|β| ∈ [ 0, c−1

q ] on the coefficient

κ + iβ. Then for every u0 ∈ L2(Ω) there exists a unique strong solution u(·) ∈
C([ 0,∞);L2(Ω)) to (CGL)Ω satisfying the following:

u(·) ∈ C0,1
loc (R+;L

2(Ω)) ∩ C
0,1/2
loc (R+;H

1
0 (Ω)) ∩ C

0,1/q
loc (R+;L

q(Ω)),(3.1)

(d/dt)u(·), Δu(·), |u|q−2u(·) ∈ L∞
loc(R+;L

2(Ω)),(3.2)

‖u(t)‖L2 ≤ eγt‖u0‖L2 ∀ t ≥ 0.(3.3)

Set U(t)u0 := u(t). Then {U(t); t ≥ 0} forms a quasi-contraction semigroup on
L2(Ω):

(3.4) ‖U(t)u0 − U(t)v0‖L2 ≤ eγt‖u0 − v0‖L2 , u0, v0 ∈ L2(Ω).
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(II) (General non-linearity). Impose restriction κ−1|β| ∈ (c−1
q ,∞) on the coeffi-

cient κ+ iβ, where the exponent q of non-linearity is assumed to satisfy

(3.5) 2 ≤ q ≤ 2 +
4

N
.

Then for every u0 ∈ L2(Ω) there exists a unique strong solution u(·) ∈ C([ 0,∞);L2)
to (CGL)Ω satisfying the following:

u(·) ∈ C
0,1/2
loc (R+;L

2(Ω)) ∩ C(R+;H
1
0 (Ω)),(3.6)

(d/dt)u(·), Δu(·), |u|q−2u ∈ L2
loc(R+;L

2(Ω)),(3.7)

‖u(t)‖L2 ≤ eγt‖u0‖L2 ∀ t ≥ 0.(3.8)

Set U(t)u0 := u(t). Then {U(t); t ≥ 0} forms a locally Lipschitz semigroup on
L2(Ω):

(3.9) ‖U(t)u0 − U(t)v0‖L2 ≤ eK(t,‖u0‖∨‖v0‖)‖u0 − v0‖L2 , u0, v0 ∈ L2(Ω),

where K(t,M) := K1t +K2e
2γ+tM2 and γ+ := max{0, γ}. Furthermore, K1 and

K2 are positive constants depending only on λ, κ, β, γ, q, and N .

Remark 3.2 (|β|-dependence in case (II)). Two constants in K(t,M) are given as

K1 := γ + (1− θ)(|β| − c−1
q κ)C1, K2 :=

θ

2 q κ
(|β| − c−1

q κ)C1.

Then since K1 → γ and K2 → 0 as |β| ↓ c−1
q κ, it follows that K(t,M) → γ t

(|β| ↓ c−1
q κ) and hence (3.4) is the limiting case of (3.9). Here we note further that

(3.10) θ = fN (q) :=
2(q − 2)

2q −N(q − 2)
∈ [0, 1] ⇔ q ∈

[
2, 2 +

4

N

]
.

In fact, we see that

0 = fN (2) ≤ fN (q) ≤ fN (2 + 4/N) = 1

(but C1 > 0 is not so explicit).

Remark 3.3 (Smoothing effect). Define S and B as in (2.1). Then these operators

are also useful in the proof of Theorem 3.1. Since L2 = D(S) ∩D(B), the closure
of D(S) ∩D(B), (3.2) and (3.7) are described as

(3.11) U(t)[D(S) ∩D(B)] ⊂ D(S) ∩D(B) a.a. t > 0.

This phenomenon is called the smoothing effect of {U(t)} on the initial values
which is peculiar to parabolic type evolution equations. In particular, if U(t) maps
D(S) ∩D(B) into itself for t > 0 (cf. [4], [35], [58], [3]), then (3.11) holds for every
t > 0.

Proof of Theorem 3.1 (I) is divided into two parts. The first part is concerned
with initial values in H2∩H1

0 ∩L2(q−1). Then based on the first part the reasoning
is extended to initial values in L2. Proof of (II) will be outlined in the next section.
Proof of (I) is summarized as follows. Under the restriction κ−1|β| ≤ c−1

q a quasi-

contraction semigroup {U(t)} on L2 is constructed. If v0 ∈ H2∩H1
0 ∩L2(q−1), then

v(t) := U(t)v0 is a unique strong solution to (CGL)Ω. But we need the notion of
subdifferential operators to show that for u0 ∈ L2, u(t) := U(t)u0 is really a unique
strong solution to (CGL)Ω.
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Proof of Theorem 3.1 (I) (outline).

Step 1 (Initial values in D(S) ∩ D(B)). First we describe the existence proof for
the initial value v0 ∈ H2 ∩H1

0 ∩ L2(q−1) compared with that of Theorem2.1.
(ACP)00 in Section 2 is now replaced with

(ACP)0

⎧⎨
⎩

du

dt
+ (λ+ iα)Su(t) + (κ+ iβ)Bu(t)− γu = 0 a.e. on (0,∞),

u(0) = v0.

That is, iS and B in (ACP)00 are replaced with (λ + iα)S and (κ + iβ)B as in
(ACP)0. On the one hand, (λ+ iα)S keeps the same m-accretivity as iS by virtue
of non-negative selfadjointness of S. On the other hand, the accretivity of (κ+iβ)B
is kept by (2.9) under condition |β| ≤ c−1

q κ:

Re
{
(κ+ iβ)(Bu−Bv, u− v)

}
≥ κRe (Bu−Bv, u− v)− |β| · |Im (Bu−Bv, u− v)|
≥ (c−1

q κ− |β|)|Im (Bu−Bv, u− v)| ≥ 0.

The inequality (2.13) of the separation property (implying the maximality of iS+B)
is now replaced with

(3.12) λ‖Sv‖L2 ≤ ‖(λ+ iα)Sv + (κ+ iβ)Bεv‖L2 , v ∈ D(S), ε > 0

because we employ (2.15) instead of (2.10) as noted in Remark 2.6; in this mod-
ification we are supposed to compute the integral (Sv,Bεv)L2 , v ∈ D(S), using
integration by parts (guaranteed by Lemma4.5 (a) below). In the same way as in
the case of iS +B (3.12) yields the maximality of

(3.13) A = A(λ+ iα, κ+ iβ) := (λ+ iα)S + (κ+ iβ)B.

Consequently, we can obtain the assertion on (CGL)Ω corresponding to Theo-
rem2.1 for (NCGL)Ω. Proof of Theorem3.1 (I) for u0 ∈ L2 is based on this
assertion. Therefore, it is worth stating as a lemma. But, the difference from
Theorem2.1 is very little.

Lemma 3.4. Let q ≥ 2. Then for v0 ∈ H2(Ω)∩H1
0 (Ω)∩L2(q−1)(Ω) there exists a

unique strong solution v(·) ∈ C([0,∞); L2(Ω)) to (CGL)Ω, satisfying

v(·) ∈ C0,1([0, T ]; L2(Ω)) ∩ C0,1/2([0, T ]; H1
0 (Ω)) ∩ C0,1/q([0, T ]; Lq(Ω)),

(d/dt)v(·), Δv(·), |v|q−2v(·) ∈ L∞(0, T ; L2(Ω)) ∀ T > 0.

Besides, inequality (2.2) is replaced with

(3.14) ‖U(t)v0 − U(t)w0‖L2 ≤ eγt‖v0 − w0‖L2 , v0, w0 ∈ H2 ∩H1
0 ∩ L2(q−1).

Thus {U(t); t ≥ 0} can be extended to a quasi-contraction semigroup on L2(Ω).

The operator iS + B in (NCGL)Ω is replaced with quasi-m-accretive operator
A−γ = (λ+ iα)S+(κ+ iβ)B−γ in (CGL)Ω: Re ((A−γ)u− (A−γ)v, u− v)L2 ≥
−γ‖u− v‖2. This explains the factor eγt on the right-hand side of (3.14).

Step 2 (Approximation of initial values in L2). The m-accretivity of S + B =
A(1 + i0, 1 + i0) is contained in those of A (see (3.13)). This enables one to define
u0,n := (1 + n−1(S + B))−1u0 for u0 ∈ L2. Then we see that {u0,n} is a sequence

in H2(Ω) ∩H1
0 (Ω) ∩ L2(q−1)(Ω) satisfying

(3.15) ‖u0 − u0,n‖L2 → 0 (n → ∞), ‖u0,n‖L2 ≤ ‖u0‖L2 (n ∈ N).
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Hence (3.14) yields that there exists u(·) ∈ C([0,∞);L2(Ω)) such that

(3.16) u(t) := U(t)u0 = lim
n→∞

U(t)u0,n, t > 0.

It is clear that u(0) = u0, however, we have to spend some time to prove that
∂ϕ(u(·)), ∂ψ(u(·)), (d/dt)u(·) make sense for u(·) given by (3.16) and hence the
equation

(3.17)
du

dt
+ (λ+ iα)∂ϕ(u) + (κ+ iβ)∂ψ(u)− γu = 0 a.e. on (T−1, T )

holds in L2(T−1, T ;L2(Ω)) for every T > 1. Actually, because T is arbitrary, the
equation holds over the whole interval (0,∞). (3.17) is a new description of the
CGL equation from the viewpoint of lower semicontinuous convex functions ϕ and
ψ. Here ∂ϕ and ∂ψ in the correspondence (between (3.17) and (ACP)0){

∂ϕ(u) = Su = −Δu, D(∂ϕ) = H1
0 (Ω) ∩H2(Ω),

∂ψ(u) = Bu = |u|q−2u, D(∂ψ) = L2(q−1)(Ω) ∩ L2(Ω)

are respectively interpreted as the sub-differentials of ϕ and ψ on L2(Ω):

ϕ(u) :=

{
(1/2)‖∇u‖2L2 for u ∈ D(ϕ) := H1

0 (Ω),

∞ otherwise,
(3.18)

ψ(u) :=

{
(1/q)‖u‖qLq for u ∈ D(ψ) := L2(Ω) ∩ Lq(Ω),

∞ otherwise,
(3.19)

(for details see the beginning of Section 4). Now take a sequence {u0,n} as in
(3.16). Then Lemma3.4 yields that the approximate solution un(t) := U(t)u0,n in
C([0,∞); L2(Ω)) satisfies the following equation:

(3.20)
dun

dt
+ (λ+ iα)∂ϕ(un) + (κ+ iβ)∂ψ(un)− γun = 0 a.e. on [0,∞).

Put φ := ϕ or ψ, and w := un. Then as an advantage of the new viewpoint the
chain rule for the composite function φ ◦ w is available:

(3.21)
d

dt
(φ ◦ w)(t) = Re

(
∂φ(w(t)),

dw

dt

)
a.a. t ∈ [0, T ] ∀ T > 0.

This leads us to several estimates of solutions by taking the inner product of (3.20)
with un(·) and so on.

Lemma 3.5. Let {ϕ, ψ} be the pair of convex functions on L2 with their sub-
differentials {∂ϕ, ∂ψ} as defined above. Let un(·) be a strong solution to (CGL)Ω
in the sense of Lemma3.4, satisfying equation (3.20) in terms of {∂ϕ, ∂ψ}. For
simplicity assume that λ−1|α| ∈ [0, c−1

q ] in addition to κ−1|β| ∈ [0, c−1
q ]. Then the

inequality

t [λϕ(un(t)) + κψ(un(t))](3.22)

+

∫ t

0

s eq γ+(t−s)
(
λ2‖∂ϕ(un(t))‖2L2 + κ2‖∂ψ(un(t))‖2L2

)
ds

≤ 1

4
eq γ+t‖u0‖2L2

holds for every t > 0. Here γ+ = max{0, γ} as before.
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In fact, taking the inner product of (3.20) with un(·), it is easy to see that
‖un(t)‖L2 ≤ eγt‖u0‖L2 (t ≥ 0) and

(3.23)

∫ t

0

eq γ+(t−s)[λϕ(un(s)) + κψ(un(s))] ds ≤
1

4
eq γ+t‖u0‖2L2

(in the latter case use condition q ≥ 2). Next, we compute by taking the inner
products of (3.20) with λ ∂ϕ(un) and κ ∂ψ(un), respectively. Adding these two
equalities, we have, after some computations,

d

ds

{
eq γ+(t−s)[λϕ(un(s)) + κψ(un(s))]

}
(3.24)

+ eq γ+(t−s)
[
λ2‖∂ϕ(un(s))‖2L2 + κ2‖∂ψ(un(s))‖2L2

]
≤ 0.

During the process we have used the assumption κ−1|β| ∈ [0, c−1
q ] and λ−1|α| ∈

[0, c−1
q ] to delete the following two terms by their non-negativity:

Re
{
(λ+ iα)(∂ϕ(un), ∂ψ(un))L2

}
(3.25)

=λRe (∂ϕ(un), ∂ψ(un))L2 − αIm (∂ϕ(un), ∂ψ(un))L2

≥
(
c−1
q λ− |α|

)
|Im (∂ϕ(un), ∂ψ(un))L2 | ≥ 0,

Re
{
(κ+ iβ)(∂ψ(un), ∂ϕ(un))L2

}
(3.26)

=κRe (∂ϕ(un), ∂ψ(un))L2 + βIm (∂ϕ(un), ∂ψ(un))L2

≥
(
c−1
q κ− |β|

)
|Im (∂ϕ(un), ∂ψ(un))L2 | ≥ 0.

Actually, we do not need the restriction λ−1|α| ∈ [0, c−1
q ] on the coefficient of

∂ϕ = −Δ, however, we have shortened the reasoning. By the way, in the subsequent
computation we want to make the left-hand side of (3.23). It is realized by the
following integration by parts:∫ t

0

s
d

ds

{
eq γ+(t−s)[λϕ(un(s)) + κψ(un(s))]

}
ds

=
[
s eq γ+(t−s){λϕ(un(s)) + κψ(un(s))}

]s=t

s=0

−
∫ t

0

eq γ+(t−s)[λϕ(un(s)) + κψ(un(s))] ds.

Taking this into account, we integrate (3.24) multiplied by s. Then (3.23) yields
(3.22). This finishes the preparation for the final step in Proof of Theorem3.1 (I).

Step 3 (Initial values in L2). We shall show that u(·) defined by (3.16) is a strong
solution to (CGL)Ω. To this end let T > 1. Then, replacing the interval (0, t) of
integration in (3.22) with a smaller one (T−1, T ) (satisfying 0 < T−1 < T ≤ t) and
noting that s ≥ T−1, we can find a constant M > 0 such that∫ T

T−1

(
‖∂ϕ(un(s))‖2L2 + ‖∂ψ(un(s))‖2L2

)
ds ≤ 1

4
MTeq γ+T ‖u0‖2L2 .

This implies that {∂ϕ(un(·))} and {∂ψ(un(·))} are bounded in L2(T−1, T ; L2(Ω)).
The equation (3.20) yields that so is {(dun/dt)(·)}. Since ∂ϕ, ∂ψ and d/dt are
demiclosed as operators in L2(T−1, T ; L2(Ω)), it follows from (3.16) that for a.a.
t ∈ (T−1, T ),

(3.27) u(t) = U(t)u0 ∈ D(∂ϕ) ∩D(∂ψ) = H2(Ω) ∩H1
0 (Ω) ∩ L2(q−1)(Ω).
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Besides, three sequences {∂ϕ(un(·))}, {∂ψ(un(·))}, {(dun/dt)(·)} converges, respec-
tively, to ∂ϕ(u(·)), ∂ψ(u(·)), (du/dt)(·) weakly in L2(T−1, T ; L2(Ω)). Since T > 1
is arbitrary, (3.17) holds on the whole interval (0,∞).

To prove the property (3.2) of the solution take t0 ∈ (0, 1) satisfying (3.27).
Then it is possible to employ u(t0) as an initial value in Lemma3.4. Therefore, we
can get a new expression of the solution over the interval [t0, t

−1
0 ]:

u(t) = U(t)u0 = U(t− t0)U(t0)u0 = U(t− t0)u(t0), t ∈ [t0, t
−1
0 ].

This implies that u(·) has the property stated in Lemma3.4 over the interval
[t0, t

−1
0 ]. Since t0 > 0 is almost arbitrary, it follows that every unique strong

solution u(·) to (CGL)Ω has property (3.2), and hence property (3.1), even when
u0 ∈ L2.

4. Abstract theorem — Proof of Theorem 3.1 (II)

What was mentioned in previous Sections 2 and 3 makes it clear that abstract
theory of evolution equations (with accretive non-linearity) is directly applicable
to (CGL)Ω. In this section we introduce another abstract theorem (with non-
accretive non-linearity) to prove Theorem3.1 (II) and outline the verification of
those conditions assumed in the theorem (for full details of this section see [49]).

Let X be a complex Hilbert space with inner product (·, ·) and norm ‖ · ‖. Let S
be a non-negative selfadjoint operator in X, such as −Δ with Dirichlet boundary
condition in Sections 2 and 3. Next, let ψ : X → (−∞,∞] be a lower semi-
continuous convex function with effective domainD(ψ) := {u ∈ X; ψ(u) < ∞} �= ∅.
Then, generally speaking, the sub-gradient ∂ψ(u) of ψ at u ∈ D(ψ) is defined by

∂ψ(u) := {f ∈ X; ψ(v)− ψ(u) ≥ Re (f, v − u) ∀ v ∈ D(ψ)}.

Here ∂ψ(u) seems to be just like a set, that is, ∂ψ is a (possibly multi-valued) map-
ping, called a sub-differential operator, from D(∂ψ) := {u ∈ D(ψ); ∂ψ(u) �= ∅}
to X. But we restrict ourselves here to the case of ψ ≥ 0 and single-valued ∂ψ.
It is quite important that we can prove the m-accretivity of ∂ψ and that the non-
negative self-adjoint operator S is also expressed as the subdifferential S = ∂ϕ of a
convex function. Here ϕ : X → [0,∞] is defined by

ϕ(u) :=

{
(1/2)‖S1/2u‖2 if u ∈ D(ϕ) := D(S1/2),

∞ otherwise

(S1/2 denotes the square root of S). Under this notation (CGL)Ω is described as
an abstract Cauchy problem in X = L2:

(ACP)

{
(d/dt)u+ (λ+ iα)∂ϕ(u) + (κ+ iβ)∂ψ(u)− γu = 0 a.e. on (0,∞),

u(0) = u0.

The validity of the viewpoint of sub-differential operators is well known, espe-
cially in the field of non-linear parabolic type evolution equations in real Hilbert
spaces; a typical example is given by (3.17) with α = β = 0. In fact, there are so
many investigations the representatives of which are Brezis [4] (the case of κ ≥ 0)
and Otani [50], [51] (the case of κ < 0) ([63], [58] and [3] are expository books
published relatively recently).
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To write down the assumption imposed on (ACP) we need some deep properties
of the family {(∂ψ)ε; ε > 0} of Yosida approximations of m-sectorial operator ∂ψ:

(∂ψ)ε := ε−1(1− Jε), Jε = Jε(∂ψ) := (1 + ε∂ψ)−1 ∀ ε > 0.

Here we have the formal associative law (∂ψ)ε = ∂(ψε), where ψε is the Moreau-
Yosida regularization of convex function ψ defined by

ψε(v) := min
w∈X

{
ψ(w) +

1

2ε
‖w − v‖2

}
∀ v ∈ X ∀ ε > 0

(cf. [4, Proposition 2.11] or [3, Theorem 2.9]). Therefore, the Yosida approximation
of ∂ψ is simply denoted by ∂ψε := (∂ψ)ε = ∂(ψε).

Now we introduce seven conditions imposed on (ϕ,ψ) and (∂ϕ,∂ψ):

(A1): ∃ q ∈ [2,∞); ψ(ζu) = |ζ|qψ(u) ∀ u ∈ D(ψ) ∀ ζ ∈ C (Re ζ > 0).
(A2): ∃ cq ≥ 0 ∀ u, v ∈ D(∂ψ),

|Im (∂ψ(u)− ∂ψ(v), u− v)| ≤ cqRe (∂ψ(u)− ∂ψ(v), u− v).

(A3): |Im (∂ϕ(u), ∂ψε(u))| ≤ cqRe (∂ϕ(u), ∂ψε(u)) ∀ u ∈ D(∂ϕ); here cq is
the same as in condition (A2)

(
q ∈ [2,∞)

)
.

(A4): (∂ψ(u), ∂ψε(u)) ≥ 0 ∀ u ∈ D(∂ψ) ∀ ε > 0.
(A5): ∃ θ ∈ [0, 1] and for every η > 0 there exists a constant C1 = C1(η) > 0

such that for ε > 0 and u, v ∈ D(ϕ) ∩D(ψ),

|Im (∂ψε(u)− ∂ψε(v), u− v)| ≤ η ϕ(u− v)

+ C1

[ψ(u) + ψ(v)

2

]θ
‖u− v‖2.

(A6): For every η > 0 there exists a constant C2 = C2(η) > 0 such that for
ε > 0 and u ∈ D(∂ϕ),

|Im (∂ϕ(u), ∂ψε(u))| ≤ η‖∂ϕ(u)‖2 + C2ψ(u)
θϕ(u).

Here θ ∈ [0, 1] is the same as in condition (A5).
(A7): There exists a constant C3 > 0 such that for u, v ∈ D(∂ψ) and ν,

μ > 0,

|Im (∂ψν(u)− ∂ψμ(u), v)| ≤ C3|ν − μ|
(
σ‖∂ψ(u)‖2 + τ‖∂ψ(v)‖2

)
.

Here σ, τ > 0 are two constants satisfying σ + τ = 1.

Remark 4.1. First, (A1) implies ψ(0) = 0 so that it follows from ψ ≥ 0 that
0 ∈ D(∂ψ) and ∂ψ(0) = 0. Thus, the m-accretivity of ∂ϕ + ∂ψ (guaranteed by
(A2), (A3)) yields the simple estimate ‖(1 + n−1(∂ϕ + ∂ψ)−1‖ ≤ 1 (n ∈ N).
Second, we see from their contents that (A5), (A6) are, respectively, regarded as
supplementary to (A2), (A3) which are the key in Section 2. Note further that the
constant θ appearing in (A5), (A6) is computed as in (3.10). Finally, condition
(A7) has been introduced in [49] for the first time to show that the family of
approximate solutions satisfies Cauchy’s convergence condition (without assuming
the compactness of the sub-level set of ϕ) (see also [42]).

Theorem 4.2. Let cq be the sectoriality constant of ∂ψ as in condition (A2) (q ≥
2) in addition to λ, κ ∈ R+ and α, β, γ ∈ R. Assume that conditions (A1)−(A7)
are satisfied. Impose restriction c−1

q < κ−1|β| on κ + iβ (κ > 0). Then for every

u0 ∈ D(∂ϕ) ∩D(∂ψ) there exists a unique strong solution u(·) ∈ C([ 0,∞);X) to
(ACP) satisfying the following:
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(a) u(·) ∈ C
0,1/2
loc (R+;X), with ‖u(t)‖ ≤ eγt‖u0‖ ∀ t ≥ 0,

(b) ∂ϕ(u(·)), ∂ψ(u(·)), (du/dt)(·) ∈ L2
loc(R+;X),

(c) ϕ(u(·)), ψ(u(·)) ∈ W 1,1
loc (R+).

Next let θ be as in conditions (A5), (A6). For two constants K1 := γ + (1 −
θ)C0C1 and K2 := (θ/2qκ)C0C1 put

(4.1) K(t,M) := K1 t+K2 e
2γ+tM2,

where C0 := |β| − c−1
q κ and C1 is as given in condition (A5). Then the solution

operators U(t) (induced by u0 �→ u(·) and v0 �→ v(·)) satisfies (local) Lipschitz
continuity:

(4.2) ‖U(t)u0 − U(t)v0‖ ≤ eK(t,‖u0‖∨‖v0‖)‖u0 − v0‖ ∀ t ≥ 0.

In particular, if X = D(∂ϕ) ∩D(∂ψ), then the family {U(t)} forms a semigroup
on X.

The proof of Theorem4.2 is divided into two parts just like as in the proof of
Theorem3.1 (I) (though the abstract setting is emphasized in Theorem4.2). In

fact, the initial values in D(∂ϕ)∩D(∂ψ) and D(∂ϕ) ∩D(∂ψ) are respectively dealt
with in the first and second parts. Therefore the key to the proof is to establish
the next

Proposition 4.3. Let cq be the sectoriality constant of ∂ψ (q ≥ 2) in addition to
λ, κ ∈ R+ and α, β, γ ∈ R. Assume that conditions (A1)−(A7) are satisfied.
For simplicity assume that λ−1|α| ∈ [0, c−1

q ] in addition to c−1
q < κ−1|β|. Then for

every v0 ∈ D(∂ϕ)∩D(∂ψ) there exists a unique strong solution v(·) ∈ C([ 0,∞);X)
to (ACP) satisfying the following:

(a)′ v(·) ∈ C0,1/2([0, T ];X) ∀ T > 0, with ‖v(t)‖ ≤ eγt‖v0‖ ∀ t ≥ 0,
(b)′ ∂ϕ(v(·)), ∂ψ(v(·)), (dv/dt)(·) ∈ L2([0, T ];X) ∀ T > 0,
(c)′ ϕ(v(·)), ψ(v(·)) ∈ W 1,1(0, T ) ∀ T > 0, with

(4.3) 2λ

∫ t

0

ϕ(v(s)) ds+ q κ

∫ t

0

ψ(v(s)) ds ≤ 1

2
e2 γ+t‖v0‖2 ∀ t ≥ 0.

Here for two solutions v0 �→ v(·) and w0 �→ w(·) (w0 ∈ D(∂ϕ) ∩D(∂ψ)) one has

(4.2)′ ‖v(t)− w(t)‖ ≤ eK(t,‖v0‖∨‖w0‖)‖v0 − w0‖ ∀ t ≥ 0,

where K(t,M) is the same function as in Theorem4.2.

To prove Proposition 4.3 we consider a family of problems approximate to (ACP):

(ACP;A-Bε)

{
(d/dt)vε(t) +Avε(t) +Bεvε(t) = 0, t > 0,

v(0) = v0 ∈ D(∂ϕ) ∩D(∂ψ).

Here we define the accretive operator A and its Lipschitz perturbation B as follows:

A := (λ+ iα)∂ϕ+ (κ+ i δc−1
q κ)∂ψ, D(A) := D(∂ϕ) ∩D(∂ψ),

Bε := i (β − δc−1
q κ)∂ψε − γ, D(Bε) := D(∂ψε) = X;

note that |δ| = 1 and |β − δ c−1
q κ| = |β| − c−1

q κ (= C0 > 0) because we take
δ := sgn β for β �= 0. This means that the coefficient of ∂ψε (in the definition of
Bε) does not vanish. On the one hand, A is nothing but the operator given by
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(3.13) with β = β0 := δ c−1
q κ. Since κ−1|β0| = c−1

q (this unifies two endpoint cases
in Theorem3.1 (I)), A becomes m-accretive in X. Note further that

(4.4) λ‖∂ϕ(u)‖ ≤ ‖(λ+ iα)∂ϕ(u) + (κ+ i δ c−1
q κ)∂ψ(u)‖ ∀ u ∈ D(∂ϕ) ∩D(∂ψ)

which is derived by letting ε ↓ 0 in (3.12) with β = β0. That is, in our strategy A
is selected at two endpoints of its m-accretivity (conditions (A2), (A3) are used
here). On the other hand, Bε + γ is Lipschitz continuous on X as a constant
multiple of Yosida approximation of ∂ψ (though it loses the accretivity because the
coefficient of ∂ψ is pure imaginary). Therefore, we can apply to (ACP;A-Bε) the
well-known fact that the solvability of (ACP) with m-accretive operator is stable
under Lipschitz perturbation. Namely, for every v0 ∈ D(A) there exists a unique
strong solution vε(·) ∈ C([0,∞); X) to the approximate problem (ACP;A-Bε)
satisfying

vε(·) ∈ C0,1([0, T ]; X) ∀ T > 0,

Avε(·), (dvε/dt)(·) ∈ L∞(0, T ;X) ∀ T > 0(4.5)

(cf. [58, Corollary IV.4.1]). It follows from (4.5) and (4.4) that

∂ϕ(vε(·)) ∈ L∞(0, T ;X).

This concludes that ϕ ◦ vε ∈ W 1,1(0, T ) with its derivative given by (3.21) with
φ := ϕ and w := vε:

d

dt
ϕ(vε(t)) = Re

(
∂ϕ(vε(t)),

dvε
dt

(t)
)

a.a. t ∈ [0, T ] ∀ T > 0.

Here condition (A1) yields that Re (∂ψ(vε), vε) = q ψ(vε) and Im (∂ψ(vε), vε) = 0 =
Im (∂ψε(vε), vε). Consequently, we can obtain ‖vε(t)‖ ≤ eγt‖v0‖ (t ≥ 0) and (4.3)
by taking the inner product of equation in (ACP;A-Bε) with vε(·). This process is
almost the same as that to (3.23) (though condition q ≥ 2 is not required). Finally,
we have

ϕ(vε(t)) +
λ

2

∫ t

0

‖∂ϕ(vε(s))‖2 ds ≤ ek(t,‖v0‖)ϕ(v0),(4.6)

ψ(vε(t)) +
κ

2

∫ t

0

‖∂ψ(vε(s))‖2 ds ≤ eqγ+tψ(v0).(4.7)

Here it is possible to give the proofs of (4.6) and (4.7) separately because of the
extra assumption λ−1|α| ∈ [0, c−1

q ]. But, when λ−1|α| > c−1
q , we need (4.6) to prove

(4.7). Note further that k(t, ‖v0‖) on the right-hand side of (4.6) is computed as

(4.8) k(t, ‖v0‖) := k1t+ k2e
2 γ+t‖v0‖2,

where k1 := 2γ+ + (1 − θ)C0 and k2 := (θ/(2 q κ))C0C2 with C0 = |β| − c−1
q κ. In

fact, taking the inner product of the equation with ∂ϕ(vε), we have

d

ds
ϕ(vε) +

λ

2
‖∂ϕ(vε)‖2 ≤ 2 γ ϕ(vε) + C0

{
|Im (∂ϕ(vε), ∂ψε(vε))| − η‖∂ϕ(vε)‖2

}
,

where we have set η := λ/(2C0). To simplify the computation here we have again
used two endpoint cases of inequality (3.26) (in which β = δ c−1

q κ):

Re
{
(κ+ i δ c−1

q κ)(∂ψ(vε), ∂ϕ(vε))L2

}
≥ 0.
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Next, applying condition (A6), we obtain

d

ds
ϕ(vε) +

λ

2
‖∂ϕ(vε)‖2 ≤

[
2 γ + C0C2ψ(vε)

θ
]
ϕ(vε) ≤ kε(s)ϕ(vε).(4.9)

Here we have kε(s) := k1+k2
{
2 q κψ(vε(s))

}
≥ 0 after applying Young’s inequality

to ψ(vε)
θ
(
(1/θ)−1 + [1/(1− θ)]−1 = 1

)
. That is, (A6) is assumed to evaluate the

term containing Bεvε. It then follows from (4.3) and (4.8) that

(4.10)

∫ t

0

kε(s) ds ≤ k(t, ‖v0‖) = k1t+ k2e
2 γ+t‖v0‖2.

Now (4.9) and (4.10) yield (4.6). On the other hand, the inner product of the
equation with ∂ψ(vε) yields

(d/ds)ψ(vε) + κ‖∂ψ(vε)‖2 ≤ qγ+ψ(vε).

The computation to lead us to (4.7) is also simplified by the non-negativity of (3.25)
which is a consequence of the extra restriction λ−1|α| ∈ [0, c−1

q ].

Lemma 4.4 (Convergence estimate). Let {vε(·)}ε>0 be a family of solutions to
approximate problem (ACP;A-Bε) with constant C0 = |β| − c−1

q κ > 0. As-
sume that conditions (A1)−(A7) are satisfied. Then there exists a limit function
v(·) ∈ C([0,∞);X) of the family {vε(·)} satisfying the initial condition v(0) = v0 ∈
D(∂ϕ) ∩D(∂ψ) with the rate of uniform convergence:

max
t∈[0,T ]

‖v(t)− vε(t)‖2 ≤ 2κ−1C0C3ψ(v0)e
qγ+T+2K(T,‖v0‖)ε (ε > 0).(4.11)

Here C3 is the constant in condition (A7) and K(t,M) is the increasing function
in t introduced in Theorem4.2.

We use ν, μ > 0 instead of the original suffix ε to outline the proof of convergence
(4.11). Then it suffices to show that

(4.12) ‖vν(t)− vμ(t)‖2 ≤ 2κ−1C0C3ψ(v0)e
qγ+t+2K(t,‖v0‖)|ν − μ|.

First it follows from the equation in (ACP;A-Bε) and condition (A2) that

2−1(d/dt)‖vν − vμ‖2 − γ‖uν − uμ‖2(4.13)

≤ − 2λϕ(vν − vμ) + C0|Im (∂ψν(vν)− ∂ψμ(vμ), vν − vμ)|.
Noting again that Im(∂ψε(uμ), uμ) = 0 (ε = μ or ν), the inner product in the
second term on the right-hand side of (4.13) is rewritten as

Im (∂ψν(vν)− ∂ψμ(vμ), vν − vμ)

= Im (∂ψν(vν)− ∂ψν(vμ), vν − vμ) + Im (∂ψν(vμ)− ∂ψμ(vμ), vν).

Setting η := 2λ/C0, we see from (4.13) that

1

2

d

dt
‖vν − vμ‖2 − γ‖vν − vμ‖2

≤ C0

{
|Im (∂ψν(vν)− ∂ψν(vμ), vν − vμ)| − η ϕ(vν − vμ)

}
+ C0|Im (∂ψν(vμ)− ∂ψμ(vμ), vν)|.

Now conditions (A5) and (A7) apply to give a differential inequality

1

2

d

dt
‖vν − vμ‖2 − C0C3|ν − μ|

(
σ‖∂ψ(vμ)‖2 + τ‖∂ψ(vν)‖2

)
≤ Ψ(vν , vμ)‖vν − vμ‖2.
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Here we employ the form of Ψ(v, w) after applying Young’s inequality to [ψ(vν) +
ψ(vμ)]

θ:

Ψ(v, w) :=
{
γ + C0C1(1− θ)

}
+ C0C1θ

ψ(v) + ψ(w)

2

=K1 +K2

{
qκ

(
ψ(v) + ψ(w)

)}
,

where Kj (j = 1, 2) is given as in (4.1). Hence (4.3) yields that∫ t

0

Ψ(vν(s), vμ(s)) ds ≤ K(t, ‖v0‖) = K1 t+K2e
2γ+t‖v0‖2.

Besides, we see from (4.7) that∫ t

0

(
σ‖∂ψ(vν(s))‖2 + τ‖∂ψ(vμ(s))‖2

)
ds ≤ 1

κ
eqγ+tψ(v0).

Consequently, by integrating the differential inequality we can obtain (4.12). This
finishes the essential part of Proof of Proposition 4.3. In fact, it will be easily
understood that the computation started from (4.13) can be employed to derive
the continuous dependence (4.2)′ of solutions on their initial values.

Verification of conditions in Theorem4.2. First conditions (A5), (A6)
have already appeared in [48] where a compactness condition is assumed instead of
conditions (A2), (A3), and (A7). That is, it is observed that condition (A7) in
addition to those conditions so far introduced is assumed in [49] to avoid the com-
pactness condition. In the integration by parts when we compute (−Δu, ∂ψε(u))L2

in conditions (A3) and (A6) it is required to differentiate ∂ψε(u) = ε−1(u − (1 +
ε∂ψ)−1u) as a function of the space variable x. On the other hand, when we verify
condition (A7), the question is the differentiation of ∂ψε(u) as a function of the
parameter ε, exemplified as

∂ψν(f)− ∂ψμ(f) =

∫ ν

μ

∂

∂ε

[
∂ψε(f)

]
dε.

To carry out these computations it suffices to prepare the following lemma on the
differentiation of inverse functions. In books on calculus it is usually stated that
such formulas of the derivatives can be constructed only locally. But thanks to the
accretivity of ∂ψ the assertion in Lemma4.5 makes sense globally.

Lemma 4.5. For ε ∈ [0,∞) and x ∈ Ω put

uε(x) :=

{
(1 + ε ∂ψ)−1f(x), (ε > 0),

f(x), (ε = 0),

that is, uε(x) + ε|uε(x)|q−2uε(x) = f(x). Then one has the following:
(a) If f ∈ H1

0 (Ω), then uε ∈ H1
0 (Ω) (as a function of x) with

∇xuε =

⎧⎨
⎩

1

1 + ε|uε|q−2
∇xf − ε

q − 2

Jac
|uε|q−4uεRe(uε ∇xf), (ε > 0),

∇xf, (ε = 0).

Here Jac := (1 + ε|uε|q−2)(1 + ε(q − 1)|uε|q−2). In particular, H1
0 (Ω) ∩ C1(Ω) is

invariant under (1 + ε ∂ψ)−1 for ε ∈ [0,∞).
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(b) If f ∈ D(∂ψ), then for every E > 0, uε ∈ C1([0, E];L2(Ω)) (as a function
of ε) with

∂uε

∂ε
=

⎧⎨
⎩− 1

1 + ε(q − 1)|uε|q−2
∂ψε(f), (0 < ε ≤ E),

−∂ψ(f), (ε = 0).

(c) If f ∈ L2(Ω), then for every ε0 ∈ (0, E) uε ∈ H1(ε0, E;L2(Ω)) (as a function
of ε) with

∂uε

∂ε
= − 1

1 + ε(q − 1)|uε|q−2
∂ψε(f) a.e. on (ε0, E).

For a proof of Lemma 4.5 (a) see [47, Lemma 6.1]; Lemma 4.5 (b) and (c) are
proved in [49, Proposition 4.4].

5. Complex Ginzburg-Landau equation (2) compactness methods

This section is devoted to the compactness methods which can be applied to
the Cauchy problem (CGL)RN . The key idea is to consider approximate problems
where −Δ is replaced with such a family of Schrödinger operators −Δ + VR with
compact resolvent:

(CGL)R

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
+ (λ+ iα)(−Δ+ VR)u+ (κ+ iβ)|u|q−2u− γu = 0

in R
N × (0,∞),

u(x, 0) = u0(x), x ∈ RN .

Here {VR; R ≥ 0} is a family of potentials diverging at infinity as defined by

VR(x) :=

{
(|x| −R)2, (|x| > R),

0, (|x| ≤ R).

That is, V0(x) = |x|2 is the usual harmonic potential. LetQ be the multiplication
operator by VR. Then S + Q = −Δ + VR becomes selfadjoint with separation
property

‖Su‖2L2 + ‖Qu‖2L2 ≤ ‖(S +Q)u‖2L2 + 2‖u‖2L2 , u ∈ D(S) ∩D(Q).

The proof is completed by computing Re (Sv,Qεv), v ∈ D(S), as was done in
Okazawa [39, Theorem 5.4] (Qε is the Yosida approximation of Q). Here v ∈ D(S)
can be replaced with v ∈ C∞

0 (RN ). In fact, by virtue of Kato’s inequality C∞
0 (RN )

becomes a core for S +Q (see Reed-Simon [55, Theorem X.28]). The compactness
of the resolvent of S +Q is also well known together with its quantum mechanical
meaning of those eigenvalues of S +Q (see [56, Theorem XIII.67]). This concludes
the compactness of (S +Q)−1/2.

We can construct an abstract existence theorem applicable to (CGL)R when we
introduce the following compactness condition,
(K) For every c > 0 the sub-level set {u ∈ D(ϕ); ϕ(u) ≤ c} of ϕ is compact in X,
in addition to conditions (A1)–(A3) in Section 4 (cf. [47, Theorem 4.1], [11]). A
few remarks are in order. First we do not require the restriction κ−1|β| ≤ c−1

q , which
is indispensable in Theorem3.1 (I), because the reasoning here does not depend on
the accretivity of non-linear operator u �→ |u|q−2u. Second, the pair (α/λ, β/κ)
has to belong to the planar domain CGL(c−1

q ) (cq is the constant appearing in
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condition (A2)) since we need those estimates of solutions to the approximation
problem

(ACP;∂ϕ-∂ψε)

⎧⎪⎪⎨
⎪⎪⎩

duε

dt
+ (λ+ iα)∂ϕ(uε) + (κ+ iβ)∂ψε(uε)− γu = 0,

t > 0,

u(0) = u0,

in which ∂ψ in (ACP) is replaced with ∂ψε. Here CGL(c) denotes the domain

CGL(c) :=
{
(x, y) ∈ R

2; xy ≥ 0 or
|xy| − 1

|x|+ |y| < c
}

when 0 < c < ∞, and CGL(∞) := R2 in the limiting case as c → ∞. That is,
exceptional domains appear in the second and fourth quadrants (see [47, Figure 1]
or [11, Figure 2] for the exact shape of CGL(c)).

We have to decide the forms of convex functions ϕ and ψ previously given by
(3.18) and (3.19) when we apply the abstract existence theorem to (CGL)R. The
form of ψ is the same as before, while as for ϕ (3.18) should be modified as

ϕ(u) :=

{
2−1

(
‖∇u‖2L2 + ‖V 1/2

R u‖2L2

)
for u ∈ D(ϕ) := H1(RN ) ∩D(V

1/2
R ),

∞ otherwise.

In fact, noting that ϕ(u) = (1/2)‖(S + Q)1/2u‖2L2 when u ∈ D(ϕ), we can verify
condition (K) because of the equivalence

{u ∈ D(ϕ); ϕ(u) ≤ c} = {(S +Q)−1/2v; v ∈ L2, ‖v‖2L2 ≤ 2 c}.

Then we can obtain the following existence theorem for (CGL)RN by letting R →
∞. We have also the assertion on uniqueness under a condition weaker than (3.5)
(cf. [11]).

Theorem 5.1. Assume that (α/λ, β/κ) ∈ CGL(c−1
q ) for λ, κ ∈ R+ and α, β ∈ R

in addition to γ ∈ R.
(I) (Existence of solutions.) For every u0 ∈ H1(RN ) ∩ Lq(RN ) there exists at
least one strong solution u(·) ∈ C([0,∞);L2) to (CGL)RN satisfying the following:

u(·) ∈ C([0,∞);H1(RN ) ∩ Lq(RN )).

Next put γ+ = max{0, γ}. Then (3.3) and the energy estimate hold:

δ2

2
‖∇u(t)‖2L2 +

1

q
‖u(t)‖qLq + η

∫ t

0

{
δ2‖Δu(s)‖2L2 + ‖u(s)‖2(q−1)

L2(q−1)

}
ds(5.1)

≤ eγ+q t

(
δ2

2
‖∇u0‖2L2 +

1

q
‖u0‖qLq

)
∀ t > 0.

Here δ > 0 and η > 0 are constants depending only on λ, κ, α, β and q.
(II) (Uniqueness of solutions.) Impose the so-called sub-critical condition
on the exponent of the power of non-linear term:

2 ≤ q < 2∗ :=

⎧⎨
⎩

2N

N − 2
= 2 +

4

N − 2
(N ≥ 3),

∞, (N = 1, 2).
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Then for every u0 ∈ H1(RN )∩Lq(RN ) there exists a unique strong solution u(·) ∈
C([0,∞);L2) to (CGL)RN . For the mapping such that u0 �→ u(·), v0 �→ v(·) one
has

‖u(t)− v(t)‖2L2 + λ

∫ t

0

exp

(∫ t

s

K(r) dr

)
‖∇u(t)−∇v(t)‖2L2 ds

≤ exp

(∫ t

0

K(r) dr

)
‖u0 − v0‖2L2 ∀ t > 0,

where K(·) ∈ C[0,∞) depends only on λ, κ, β, γ, q and the pair (E∞(u0), E∞(v0))
in which E∞(·) is defined by E∞(w) := (δ2/2)‖∇w‖2L2 + (1/q)‖w‖qLq ; note that
E∞(·) has already appeared in the energy estimate (5.1).

6. Concluding remarks

6.1 (Lp-theory). As mentioned in Section 1 an Lp-theory (1 < p < ∞) of (CGL)Ω
is dealt with in [32]. However, what they derived is only an Lp-version of Theo-
rem3.1 (II). Nevertheless, the restriction (3.5) on the power of non-linear term is
replaced with

(6.1) 2 ≤ q ≤ 2 + 2 p/N

and hence large values of q is allowable in Lp-theory with large p. Professor
H. Amann (Zurich) predicted that (3.5) is replaced with (6.1) where the local solv-
ability is concerned (cf. [41, Proposition 1.1]). An Lp-version of the whole of this
article might be obtained if one can construct a (reflexive) Banach space version of
the Hilbert space case [49] in the direction of Akagi-Otani [1].

6.2 (Distribution-valued initial values). Next, we want to mention the problem
with initial values in the space of distributions (a typical example is the Dirac
measure δ). By Brezis-Friedman [7] it has been shown that solutions to (NLH)Ω
(0 ∈ Ω) with u0 = δ exist if and only if

(6.2) 1 < q < 2 + 2/N,

where (NLH)Ω denotes (CGL)Ω with λ = κ = 1 and α = β = γ = 0, that is,
NLH means the non-linear heat equation. Note that the right-hand side of (6.2)
seems to be the limit of that in (6.1) as p ↓ 1. The author has no information on
the generalization to (CGL)Ω (0 ∈ Ω) (cf. Levermore-Oliver [27] and [41, Corollary
1.1] (when N = 1)).

6.3 (Modification of non-linear terms). In this article we have considered only
f(u) := (κ+ iβ)|u|q−2u as non-linear term of (CGL)Ω. But it is possible to gener-
alize the non-linearity to that of non-power type such as f(u) := (κ+ iβ)g(|u|2)u.
An example of g is given by g(s) := |s|(q−2)/2 log(e + c0s) (c0 ≥ 0) (see [30],
[46]). There are more challenging cases. In fact, Yokota [65] dealt with the case of
f(u) := κ|u|q−2u+ iβ|u|r−2u (q > r ≥ 2), while Ozawa-Yamazaki [53] is concerned
with the case of f(u) := (κ+ iβ)|u|p.

6.4 (The case of negative κ). In this case blow-up of solutions will happen; however,
what we know is rather unsatisfactory because it is left untouched as a question in
complex spaces. There are few papers (cf. [10] and [53]) in the list of references on
this subject.



164 NOBORU OKAZAWA

6.5 (The resolvent problem). The resolvent problem for (CGL)Ω is dealt with only
in [42] though the assertion is unsatisfactory.

6.6 (Duhamel’s principle). A recent author’s experience is related to the Cauchy
problem for the non-linear Schrödinger equation perturbed by inverse-square po-
tential:

(NLS)a

{
∂u/∂t+ i(−Δ+ a|x|−2)u+ i f(u) = 0 on RN × R,

u(x, 0) = u0(x), x ∈ RN .

Here we assume that f(u) = |u|p−1u (p ≥ 1) and

(6.3) a > −(N − 2)2/4 (N ≥ 3)

to ensure that Pa := −Δ+a|x|−2 is selfadjoint in H−1(RN ) (use Hardy’s inequality
and the Lax-Milgram theorem). Then we can define the unitary group {Sa(t)} =
{exp(itPa)}. Of concern is the difference of (NLS)a from the so-called potential
free case (NLS)0. Usually, (NLS)0 is transformed by Duhamel’s principle into the
integral equation

(INT)0 u(t) = S0(t)u0 − i

∫ t

0

S0(t− s)f(u(s)) ds, t ∈ R.

It is well known that by virtue of the Strichartz estimates for free Schrödinger group
{S0(t)} the contraction principle applies to give the existence and uniqueness of
weak solution for every u0 ∈ H1(RN ) (see Cazenave [9, Section 4.4], Tsutsumi [61,
Chapter 4]). This suggests that the Strichartz estimates for {Sa(t)} have the same
possibility to solve (NLS)a (a �= 0). But, in the computation the coefficient a of
inverse-square potential is restricted as

(6.4) a > (N/2)2[(p− 1)/(p+ 1)]2 − (N − 2)2/4

(cf. [43]), where p ∈ [1, (N + 2)/(N − 2)] is the exponent of power of the non-linear
term. But we can assert the uniqueness of solutions under the same condition as
(6.3) so that (6.4) is not necessary. Hence the first term on the right-hand side of
(6.4) is expected to vanish. This seems to be caused by the fact that the validity of
∇S0(t) = S0(t)∇ is not stable under the replacement of P0 = −Δ with Pa (a �= 0),
that is, ∇Sa(t) �= Sa(t)∇.

This inconvenience on the existence of solutions is eliminated in [44] in which we
have given up the idea of transformation into integral equations. The separation of
the existence of solutions from the Strichartz estimates was begun by Cazenave [9,
Chapter 3] (originally in [8]) and his idea seems to be indispensable to the transition
from Cauchy problems to initial-boundary value problems (NLS)Ω (cf. also [59]).
It is expected that we can deal with the singular perturbation problem (1.1) in a
natural way after the necessary progress in the study of (NLS)Ω.

References

[1] G. Akagi and M. Otani, Evolution inclusions governed by the difference of two subdifferentials
in reflexive Banach spaces, J. Differential Equations 209 (2005), 392–415. MR2110210

[2] D. Bakry, Sur l’interpolation complexe des semigroupes de diffusion, Seminaire de Proba-
bilites, XXIII, 1–20, Lecture Notes in Math. 1372, Springer, Berlin, 1989. MR1022894

[3] V. Barbu, “Nonlinear Differential Equations of Monotone Types in Banach Spaces,” Springer
Monographs in Mathematics, Springer-Verlag, New York, 2010. MR2582280

[4] H. Brezis, “Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Es-
paces de Hilbert,” Mathematics Studies 5, North-Holland, Amsterdam, 1973. MR0348562

https://www.ams.org/mathscinet-getitem?mr=2110210
https://www.ams.org/mathscinet-getitem?mr=1022894
https://www.ams.org/mathscinet-getitem?mr=2582280
https://www.ams.org/mathscinet-getitem?mr=0348562


COMPLEX GINZBURG-LANDAU EQUATION 165
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Verlag, Basel, 2006. MR2240060

[43] N. Okazawa, T. Suzuki, T. Yokota, Cauchy problem for nonlinear Schrödinger equations with
inverse-square potentials, Appl. Anal. 91 (2012), 1605–1629. MR2959550

[44] N. Okazawa, T. Suzuki, T. Yokota, Energy methods for abstract nonlinear Schrödinger equa-
tions, Evolution Equations Control Theory 1 (2012), 337–354. MR3085232

[45] N. Okazawa and T. Yokota, Monotonicity method applied to the complex Ginzburg-Landau
and related equations, J. Math. Anal. Appl. 267 (2002), 247–263. MR1886827

[46] N. Okazawa and T. Yokota, Perturbation theory for m-accretive operators and generalized
complex Ginzburg-Landau equations, J. Math. Soc. Japan 54 (2002), 1–19. MR1864925

[47] N. Okazawa, T. Yokota, Global existence and smoothing effect for the complex Ginzburg-
Landau equation with p -Laplacian, J. Differential Equations 182 (2002), 541–576.
MR1900334

[48] N. Okazawa, T. Yokota, Non-contraction semigroups generated by the complex Ginzburg-
Landau equation, Nonlinear Partial Differential Equations and Their Applications (Shanghai,
2003), 490–504, GAKUTO Internat. Ser. Math. Sci. Appl. 20, Gakkōtosho, Tokyo, 2004.
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