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CURVE COUNTING THEORIES ON CALABI-YAU 3-FOLDS:

APPROACH VIA STABILITY CONDITIONS

ON DERIVED CATEGORIES

YUKINOBU TODA

Abstract. This is an English translation of the expository article, Curve
counting theories on Calabi-Yau 3-folds: Approach via stability conditions for
derived categories (Japanese), Sugaku 66 (2014), no. 4, 337–365.

1. Introduction

It is a problem in classical algebraic geometry to count algebraic curves on a
given algebraic variety (when we can). In recent years, the curve counting theory is
more important in connection with string theory beyond the classical concerns on
it. In particular, the curve counting theory on a Calabi-Yau 3-fold is expected to
be equivalent to period integrals on its mirror manifold, and, for instance, there is a
famous calculation by physicists counting rational curves on quintic hypersurfaces in
P4. In general, curves on varieties form families, so it is not a trivial problem to give
definitions of their counting invariants. However now, the counting invariants are
constructed using virtual fundamental cycles, and formulated as Gromov-Witten
(GW) invariants.

On the other hand, in his paper [61] in 1998, Thomas introduced holomorphic
Casson invariants as a holomorphic version of Casson invariants on real 3-manifolds.
These invariants are now called Donaldson-Thomas (DT) invariants. The DT in-
variants count holomorphic vector bundles (more precisely, stable coherent sheaves)
on complex three-dimensional Calabi-Yau manifolds, and provide higher dimen-
sional generalization of Donaldson invariants on algebraic surfaces. The DT in-
variants are expected to correspond to BPS state counting in string theory (for
instance, see [22]), and they are interesting not only for mathematicians but also
physicists. Now if we consider DT invariants counting rank one stable sheaves,
then they count algebraic curves on Calabi-Yau 3-folds. The DT invariants in this
case are, in general, different from GW invariants, but Maulik-Nekrasov-Okounkov-
Pandharipande [48] conjectured in 2006 that these invariants are equivalent after
taking the generating functions and some variable change. This conjecture is called
the MNOP conjecture, and has been a motivation in the study of GW theory and
DT theory.

After some years since the proposal of the MNOP conjecture, the central tech-
niques in the study of DT invariants have been torus localizations and degeneration
formulas. These techniques are quite powerful in computing DT invariants on ex-
plicit varieties, say toric Calabi-Yau manifolds. However, it has been difficult to
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give intrinsic derivations of some expected properties of DT invariants from these
techniques, which should hold for any Calabi-Yau 3-folds. In this article, we explain
the author’s approach to the study of DT invariants via derived categories of coher-
ent sheaves and the stability conditions on them. A feature of this approach is that
it is applied to any Calabi-Yau 3-fold, and it provides an intrinsic explanation of
some properties of DT invariants via symmetries in derived categories. It enabled
us to study DT invariants on Calabi-Yau 3-folds without passing through explicit
computations, which have been impossible by the techniques so far.

We first explain basic definitions of GW invariants and DT invariants, and
then explain the MNOP conjecture and the DT/PT conjecture by Pandharipande-
Thomas [57]. Then we introduce main results in [77], [76], and the ideas for the
proofs. These are the Euler number version of the rationality conjecture of the
generating series of DT invariants (this is required in the formulation of the MNOP
conjecture) and the DT/PT conjecture, and are proved using the wall-crossing
theory in the derived category. These results were obtained in 2008–2009, and
pioneered further developments on DT type invariants [63], [79], [78], [82], [62].
In particular, we proved a flop transformation formula of DT type invariants [63],
and a product expansion formula of DT type invariants on local K3 surfaces [82],
which we also briefly explain. Finally we introduce the Bogomolov-Gieseker type in-
equality conjecture [5] on certain two term complexes on smooth projective 3-folds,
which Bayer, Macri, and the author proposed in 2011. Although this conjecture
was motivated to construct stability conditions on projective 3-folds, we also see
that this conjecture derives some relationship among DT invariants counting two
dimensional torsion sheaves on Calabi-Yau 3-folds and DT or PT invariants count-
ing curves [62]. This relationship is closely related to the Ooguri-Strominger-Vafa
conjecture in string theory, and hence has an important meaning. We also refer to
the author’s expository articles [81], [64].

2. Curve counting theories on algebraic varieties

2.1. Compactifications of moduli spaces. LetX be a smooth projective variety
defined over the complex number field. We shall define invariants counting algebraic
curves contained in X. By fixing g ≥ 0 and β ∈ H2(X,Z), we consider the moduli
space of algebraic curves C ⊂ X with genus g and fundamental homology class β.
If this moduli space is zero dimensional, then the space of global sections of the
structure sheaf of the moduli space is an Artin ring, so we may define the counting
invariants to be its length. In general, the moduli space of curves in X may have
positive dimension (i.e., curves may form a family), so we are not able to define the
counting invariants in the above naive way. However, even when the moduli space
has a positive dimension, there exist some situations in which it has zero virtual
dimension. In that case, we can define the counting invariants by constructing the
zero-dimensional virtual fundamental cycle and integrating it.

We need the compactness of the moduli spaces in order to make sense of the
integration of algebraic cycles. So we first discuss compactification of the moduli
spaces. In general, the moduli spaces of smooth curves in X are not compact, and
also their compactifications are not unique. At least we have the following two
kinds of compactifications:

(i) Stable map compactification.
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(ii) Hilbert scheme compactification. In (i), the curve C ⊂ X is smooth
as far as possible (but allows nodal singularities), but is not necessarily embedded
into X. In (ii), the curve C is embedded into X but allows any singularity in C.
As we mention later, they correspond to GW theory and DT theory, respectively.
We first explain the stable map compactification in (i).

Definition 2.1. Let C be a projective curve, and let f : C → X be a morphism.
The pair (C, f) is called a stable map if C has at worst nodal singularities and the
group of automorphisms of C preserving f is a finite group.

Given an integer g ≥ 0 and β ∈ H2(X,Z), we denote by Mg(X, β) the moduli
space of stable maps (C, f) such that the genus of C is g and f∗[C] = β. Although
the automorphism groups of stable maps are finite, they are not necessarily trivial.
Hence, the moduli space Mg(X, β) is not necessarily represented by a scheme, but
so by a proper Deligne-Mumford stack. Since it is a stack, there is information of
stabilizer groups of stable maps in Mg(X, β), which is important in studying GW
theory.

In the Hilbert scheme compactification (ii), we don’t put any restriction on
singularities of curves. Therefore, it is more convenient to use holomorphic Euler
characteristics of the structure sheaves of subschemes instead of genus. Given an in-
teger n and β ∈ H2(X,Z), the moduli space of subscheme C ⊂ X with dimC ≤ 1,
χ(OC) = n, [C] = β is called the Hilbert scheme, and denoted by Hilbn(X, β).
Contrary to stable maps, the space Hilbn(X, β) is always represented by a projec-
tive scheme. Let us observe a difference between compactifications (i), (ii) in the
following example.

Example 2.2. Let X = P2, and consider for t ∈ C∗ a smooth conic

Ct = {[X : Y : Z] ∈ P2 : Y 2 = t2XZ}.
We consider the limit of the above family of curves at t → 0. If we take the limit
t → 0 of the defining equation of Ct, we obtain the double curve C0 = {Y 2 = 0}.
C0 is embedded into P2, but it is singular, not even reduced. C0 is the limit of Ct in
the Hilbert scheme. On the other hand, the curve Ct is the image of the following
map ft : P

1 → P2:

ft([u : v]) = [u2 : tuv : v2].

If we take the limit t → 0 of the map ft, then we obtain the map f0. The map f0
is a double cover from P1 to the line Y = 0, in particular, it is not an embedding.
The map f0 is the limit as stable maps.

Remark 2.3. In the case that X is a Grassmannian manifold, there is another
compactification via stable quotients (cf. [52], [47], [80]). The stable quotient com-
pactification is also constructed when X is a GIT quotient of an affine algebraic
variety (cf. [26]).

2.2. Gromov-Witten theory. The moduli spaces Mg(X, β), Hilbn(X, β) con-
structed in the previous subsection do not necessarily have the correct dimensions
(virtual dimensions) which they should have. The virtual dimension is given by
the difference between the dimension of the tangent space of the moduli space and
the dimension of the obstruction space which appears in the deformation theory.
Roughly speaking, if the virtual dimension is independent of a point in the moduli
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space, we can construct the virtual cycle on the moduli space having the virtual
dimension [8].

We first consider Mg(X, β). Let f : C → X be a stable map, and consider
deformations of f fixing the complex structure of C. As is well known, the space
of infinitesimal deformations of f is H0(C, f∗TX), and the obstruction space is
H1(C, f∗TX). The dimension of the deformations of the complex structures of C
is 3g − 3, and by taking into account that they are unobstructed, we see that the
virtual dimension of Mg(X, β) f : C → X is

h0(C, f∗TX)− h1(C, f∗TX) + 3g − 3.

By the Riemann-Roch theorem, the above virtual dimension is calculated as∫
β

c1(X) + (dimX − 3)(1− g).(2.1)

The virtual dimension (2.1) is independent of a point in Mg(X, β), hence there is

a virtual cycle on Mg(X, β).
Although we don’t give details on the construction of virtual cycles in this article,

we just say a few words on them. In the framework of [8], the data of tangent spaces,
the obstruction spaces of the above moduli spaces is unified by the notion of perfect
obstruction theory. The definition is given as follows.

Definition 2.4. Let M be a Deligne-Mumford stack, and let LM be the cotangent
complex of M. A perfect obstruction theory on M consists of a two term complex
of vector bundles E• = (E−1 → E0) on M together with the morphism in the
derived category

h : E• → LM

such that H0(h) is an isomorphism and H−1(h) is surjective.

Roughly speaking, the H0 of the dual of the two term complex E• stands for
the tangent space of M, and the H1 stands for the obstruction space. If there is a
perfect obstruction theory, we can construct the virtual cycle on M with dimension
rankE0 − rankE−1. However, the virtual cycle does not only depend on the stack
structure of M but also on the choice of a perfect obstruction theory. We refer
to [8], [64] for details on the construction of virtual cycles.

There is a natural perfect obstruction theory on M = Mg(X, β) determined by
the deformation theory of stable maps. Hence, we can construct the virtual cycle

[Mg(X, β)]vir ∈ A∗(Mg(X, β)).

Here the right hand side is the Chow group of Mg(X, β). The dimension of the
above virtual cycle may not be zero, but be zero if X is a Calabi-Yau 3-fold by
(2.1). Here we give the definition of Calabi-Yau manifolds.

Definition 2.5. A smooth projective variety X is called a Calabi-Yau manifold if
its canonical divisor is trivial and H1(X,OX) = 0 holds.

The condition H1(X,OX) = 0 is not essential here, but will be used later in
developing DT theory (cf. Remark 2.13). A quintic hypersurface in P4 is a famous
example of a Calabi-Yau 3-fold.
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Definition 2.6. Let X be a Calabi-Yau 3-fold. For g ∈ Z≥0 and β ∈ H2(X,Z),
the GW invariant GWg,β is defined as follows:

GWg,β =

∫
[Mg(X,β)]vir

1 ∈ Q.

We remark that, since Mg(X, β) is a Deligne-Mumford stack, the GW invariant
is not necessarily an integer. Indeed, the GW invariants are not integers in the
following example.

Example 2.7. LetX be a Calabi-Yau 3-fold, which admits a birational contraction
f : X → Y contracting a rational curve C ∼= P1 ⊂ X with normal bundle OP1(−1)⊕2

to an ordinary double point. In this case, the invariants GWg,d[C] are computed
in [25]. The result is as follows:

GW0,d[C] =
1

d3
, GW1,d[C] =

1

12d
,

GWg,d[C] =
|B2g| · d2g−3

2g · (2g − 2)!
, g ≥ 2.

Here B2g is the 2g-th Bernoulli number.

We can also show the deformation invariance of GW invariants using a general
theory of perfect obstruction theories and virtual cycles.

Theorem 2.8 ([8]). The GW invariants GWg,β are invariants under deformations
of complex structures of X.

2.3. Donaldson-Thomas theory. Next, we discuss virtual fundamental cycles
on Hilbert schemes. Let C ⊂ X be a subscheme which corresponds to a point in
Hilbn(X, β). For instance, if one looks at a textbook such as [39] on the Hilbert
schemes, one sees that the tangent space of the Hilbert scheme at C ⊂ X is given
by Hom(IC ,OC), and the obstruction space is given by Ext1(IC ,OC). Here IC is
the ideal sheaf which defines C. Hence, we expect that the virtual dimension of
Hilbn(X, β) at C ⊂ X is given by

hom(IC ,OC)− ext1(IC ,OC).

If dimX ≤ 2, then we have Exti(IC ,OC) = 0 for i ≥ 2, and the above virtual
dimension depends only on β and n by the Riemann-Roch theorem. However, if
dimX ≥ 3, then Exti(IC ,OC) does not necessarily vanish for i ≥ 2. Hence, the
virtual dimension may jump depending on a point of Hilbn(X, β). In that case, we
cannot construct the virtual cycle in the framework of [8].

The idea of how to avoid this issue is by regarding the Hilbert scheme as the mod-
uli space of coherent sheaves. We regard β, n as elements of H4(X,Q), H6(X,Q)
by Poincaré duality, and we define In(X, β) to be the moduli space of torsion free
coherent sheaves I ∈ Coh(X) satisfying the following numerical condition:

ch(I) = (1, 0,−β,−n) ∈ H0(X)⊕H2(X)⊕H4(X)⊕H6(X).(2.2)

Then, we have the following map:

Hilbn(X, β) 	 C 
→ IC ∈ In(X, β).(2.3)

For instance, if X is a Calabi-Yau manifold with dimension greater than or equal
to three, the above map becomes an isomorphism. Here by the deformation theory
of coherent sheaves (for instance, see [33]), the tangent space and the obstruction
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space of In(X, β) at IC are given by Ext1(IC , IC), Ext
2(IC , IC), respectively. As

the map (2.3) is an isomorphism, both of the tangent spaces are isomorphic, but the
obstruction spaces can be different. Then if we apply the obstruction of In(X, β)
instead of that of Hilbn(X, β), the virtual dimension is given by

ext1(IC , IC)− ext2(IC , IC).(2.4)

If X is a three-dimensional Calabi-Yau manifold, the virtual dimension defined by
(2.4) is always zero. In fact, in this case, we have Ext2(IC , IC) ∼= Ext1(IC , IC)

∨ by
Serre duality, and the virtual dimension (2.4) becomes zero. However, we remark
that, if dimX ≥ 4, then the virtual dimension (2.4) may depend on a point of
In(X, β) even if X is Calabi-Yau. By the above argument, we have the perfect
obstruction theory and the zero dimensional virtual cycle on In(X, β)

[In(X, β)]vir ∈ A0(In(X, β))

similarly to the GW theory. By integrating the above virtual cycle, we can define
the DT invariant:

Definition 2.9. Let X be a Calabi-Yau 3-fold. For n ∈ Z and β ∈ H2(X,Z), the
DT invariant In,β is defined as follows:

In,β =

∫
[In(X,β)]vir

1 ∈ Z.

Remark 2.10. Similarly to Theorem 2.8, In,β is also invariant under deformations
of complex structures of X. On the other hand, contrary to the GW invariants,
DT invariants are always integers. This is due to the fact that the moduli spaces
of subschemes are projective schemes, while stable map moduli spaces are stacks.

We set the generating series of DT invariants in the following way:

Iβ(X) =
∑
n∈Z

In,βq
n, I(X) =

∑
β∈H2(X,Z)

Iβ(X)tβ.

Example 2.11. (i) In the case of β = 0, the invariant In,0 counts zero dimensional
subschemes with length n. Then the generating series I0(X) is computed in the
following way [42], [9], [41]:

I0(X) = M(−q)χ(X).

Here M(q) is the MacMahon function defined by

M(q) =
∏
k≥1

1

(1− qk)k
.

(ii) Let C ⊂ X be a rational curve as in Example 2.7. Then the generating series
Id[C](X) is computed by [7]

∑
d≥0

Id[C](X)td = M(−q)χ(X)
∏
k≥1

(1− (−q)kt)k.
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2.4. Description via Behrend function. Comparing GW theory and DT theory,
there exist at least two different features. The one point is that, while the GW
invariants take values in rational numbers, the DT invariants take values in integers.
Th second point is that, while the GW invariants are not determined by the stack
structure of Mg(X, β), the DT invariants are determined by the scheme structure

of In(X, β). This is due to the fact that, since the tangent space Ext1(IC , IC)
of In(X, β) is dual to the obstruction space Ext2(IC , IC), the perfect obstruction
theory for the DT invariant is uniquely reconstructed from the scheme structure of
In(X, β). Furthermore, Behrend [6] constructed a canonical constructible function
χB on any complex scheme M , and proved that if M = In(X, β), the χB-weighted
topological Euler number of M coincides with the DT invariant. The constructible
function χB (called the Behrend function) is rather easily calculated using the
following result by Joyce-Song.

Theorem 2.12 ([35]). Suppose that X is a Calabi-Yau 3-fold. For each point
p ∈ In(X, β), there exists an analytic neighborhood p ∈ U ⊂ In(X, β), complex
manifold V and a holomorphic function f : V → C such that U is isomorphic to
{df = 0} as a complex analytic space.

Remark 2.13. The proof of Theorem 2.12 requires the condition H1(X,OX) = 0.

Using the above theorem, the Behrend function χB on In(X, β) is described in
the following way:

χB(p) = (−1)dimV (1− χ(Mp(f))).

Here Mp(f) is the Milnor fiber of f at p ∈ U ⊂ V . Moreover, the following result
follows from [6].

Theorem 2.14 ([6]). We have the following identity:

In,β =

∫
In(X,β)

χB dχ.(2.5)

The right-hand side of the identity (2.5) is the integration of χB over In(X, β)
with measure the topological Euler numbers. More explicitly, it is written in terms
of the weighted Euler numbers:∫

In(X,β)

χB dχ =
∑
k∈Z

k · χ(χ−1
B (k)).

Theorem 2.14 provides a strong method in computing DT invariants. For example,
if In(X, β) is non-singular and connected, then χB is a constant function with value
(−1)dim In(X,β), so the following holds:

In,β = (−1)dim In(X,β)χ(In(X, β)).(2.6)

Also there are some cases where χB is a constant function while In(X, β) is singular.
For instance, χB is a constant function (−1)n on In(X, 0) (cf. [1]). Hence, we see
that In,β is closely related to the Euler number of In(X, β).

Remark 2.15. The invariants In,β count rank one sheaves, and in general it is also
possible to define generalized DT invariants counting higher rank coherent sheaves,
or rank zero (i.e., torsion) sheaves. (More precisely, they are invariants counting
Gieseker semistable sheaves [33] on Coh(X) with respect to a fixed ample divi-
sor.) The moduli stacks which define generalized DT invariants are not necessarily
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schemes, and they may have complicated stabilizer groups. In this case, we need to
interpret the moduli stacks as elements of motivic Hall algebras, and integrate the
Behrend functions over their logarithms. As rational numbers appear in the log,
the generalized DT invariants take values in rational numbers. We will later discuss
some special cases in Subsection 3.5. Also, the motivic version of DT invariants is
expected to be defined. We refer to [35], [40] for details.

2.5. MNOP conjecture. In 2006, Maulik-Nekrasov-Okounkov-Pandharipande
[48] proposed a conjecture relating GW invariants GWg,β and DT invariants In,β
after taking their generating series. As we have seen so far, both invariants have
different features, so this is an amazing conjecture. In particular, as DT invariants
are integers, this predicts a hidden integrality of GW invariants. We first state the
conjecture:

Conjecture 2.16 ([48]). (i) (Rationality conjecture) The generating series
Iβ(X)/I0(X) is the Laurent expansion of a rational function of q at q = 0, which
is invariant under q ↔ 1/q.

(ii) (GW/DT correspondence) Under the variable change q = −eiλ, we have the
following identity:

exp

⎛
⎝ ∑

g≥0,β>0

GWg,βλ
2g−2tβ

⎞
⎠ = I(X)/I0(X).

Here β > 0 means that β is a homology class of an effective algebraic one cycle.

We explain the meaning of Conjecture 2.16 in more detail. First, as In,β = 0
for n � 0 by an easy argument, the series Iβ(X) is a Laurent series. However,
the structure sheaves of subschemes C ⊂ X which contribute to In,β may contain
zero dimensional subsheaves, and in that case In,β may not count honest curves in
X. In order to cancel out the contributions from such zero dimensional sheaves,
we take the quotient of the generating series Iβ(X) by I0(X). For example, in the
situation of Example 2.11 (ii), the generating series I[C](X)/I0(X) is computed as
follows:

I[C](X)/I0(X) = q − 2q2 + 3q3 − · · · .(2.7)

This is the Laurent expansion of the rational function q/(1+ q)2 at q = 0. Further-
more, this rational function is invariant under taking q to 1/q. Here we note that
the series of the right-hand side of (2.7) itself becomes a different series if we place
q by 1/q. The rationality conjecture (i) means that Iβ(X)/I0(X) is analytically
continued as a rational function of q to P1, and after analytic continuation, the
behavior at q = 0 and q = ∞ are the same by the variable change q 
→ 1/q. There
is no symmetric property q 
→ 1/q on the level of the series. The GW/DT corre-
spondence (ii) makes sense if we assume (i), i.e., we expand the rational function
obtained by (i) at q = −1, and then apply the variable change.

Remark 2.17. Now, Conjecture 2.16 (i) is completely solved, and (ii) is solved for
many Calabi-Yau 3-folds. We will discuss the rationality conjecture (i) in Corol-
lary 3.3. In 2012, Pandharipande-Pixton [56] showed the GW/DT correspondence
(ii) for complete intersection Calabi-Yau 3-folds in the product of projective spaces.
In particular, Conjecture 2.16 is true for quintic Calabi-Yau 3-folds. What they
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proved is the equivalence between PT invariants and DT invariants which we dis-
cuss in the next subsection. Since the equivalence between PT invariants and DT
invariants is proved (cf. Corollary 3.3), Conjecture 2.16 holds as a result.

2.6. Pandharipande-Thomas conjecture. In 2009, Pandharipande-Thomas
[57] introduced the notion of stable pairs. It was an attempt to give a geometric
understanding of the quotient I(X)/I0(X) of the generating series. More precisely,
they conjectured that each coefficient of I(X)/I0(X) counts stable pairs. We first
give the definition of stable pairs.

Definition 2.18. A pair (F, s) is called a stable pair if F is a pure one dimensional
coherent sheaf and s : OX → F is a morphism of coherent sheaves whose cokernel
has at most zero dimensional support.

Here we say that F is pure one dimensional if the support of F is one dimensional,
and F does not have a zero dimensional subsheaf.

Example 2.19. Let C ⊂ X be a smooth curve, and let D ⊂ C be an effective
divisor. By setting F = OC(D) and s : OX → OC(D) the natural morphism, the
pair (F, s) determines a stable pair.

We explain the difference between the notion of stable pairs and that of ideal
sheaves IC for subschemes C ⊂ X. The ideal sheaf IC determines a pair (OC , s)
by setting s to be the natural surjection s : OX → OC . This pair determines a
stable pair if and only if OC does not have a zero dimensional sheaf. On the
other hand, the stable pair (F, s) is determined by an ideal sheaf if and only if s is
surjective. In other words, although stable pairs guarantee that F does not have a
zero dimensional subsheaf, they lose the surjectivity of s.

Similarly to the DT theory, for a given β ∈ H2(X,Z), n ∈ Z, we consider the
moduli space of stable pairs (F, s) satisfying the numerical condition

[F ] = β, χ(F ) = n.(2.8)

This is proved to be realized as a projective scheme Pn(X, β) in [57]. An important
point here is that Pn(X, β) is regarded as the moduli space of two term complexes

I• = (OX
s→ F ) ∈ Db Coh(X)(2.9)

determined by stable pairs. Here Db Coh(X) is the bounded derived category of
coherent sheaves on X.

Then if we regard the deformation theory of stable pairs as the deformation
theory of objects I• in the derived category, the tangent space of Pn(X, β) at (F, s)
is Ext1(I•, I•) and the obstruction space if Ext2(I•, I•). Similarly to the case of
DT theory, these spaces are dual to each other by Serre duality. Hence there exists
a perfect obstruction theory and the zero dimensional virtual cycle [Pn(X, β)]vir on
Pn(X, β).

Definition 2.20. Let X be a Calabi-Yau 3-fold. For n ∈ Z and β ∈ H2(X,Z), the
PT invariant Pn,β is defined as follows:

Pn,β =

∫
[Pn(X,β)]vir

1 ∈ Z.

Remark 2.21. Similarly to Theorem 2.8, the invariant Pn,β is also invariant under
deformations of complex structures of X. Also it is expected that Pn(X, β) satisfies
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the property similar to Theorem 2.12, although its proof is not available at this
moment. However, Pn,β is given by the integration of the Behrend constructible
function on Pn(X, β) by [6]. Therefore, Pn,β is closely related to χ(Pn(X, β)).

The generating series of the PT invariants are defined by

P (X) = 1 +
∑

n∈Z,β>0

Pn,βq
ntβ.

The following is the main conjecture in [57], called DT/PT correspondence.

Conjecture 2.22. The following equality holds:

I(X)/I0(X) = P (X).

As we discuss in the next subsection, the above conjecture is already solved. Let
us observe the above conjecture in the following example.

Example 2.23. In the situation of Example 2.7, the stable pairs which con-
tribute to Pn,[C] are only (OC(n − 1), s �= 0). Hence Pn(X, [C]) is isomorphic

to P(H0(C,OC(n− 1))) ∼= Pn−1, and Pn,[C] is

(−1)dimPn(X,[C])χ(Pn(X, [C])) = (−1)n−1n

similarly to (2.6). Hence,∑
n∈Z

Pn,[C]q
n = q − 2q2 + 3q3 − · · · ,

and Conjecture 2.22 is checked in this case.

3. The product expansion formula of the generating series

3.1. The main result. We explained the MNOP conjecture and the PT conjec-
ture in the previous section. In this section, we introduce the approach of these
conjectures using the notions of derived categories of coherent sheaves and stability
conditions on them. We first state the main theorem in [77], [76].

Theorem 3.1 (Toda [77], [76] (Euler number version), Bridgeland [19]). Let X
be a Calabi-Yau 3-fold. For each n ∈ Z and β ∈ H2(X,Z), there exist invariants
Nn,β ∈ Q, Ln,β ∈ Q satisfying the following conditions:

• We have Nn,β = N−n,β and Ln,β = L−n,β.
• We have Nn,β = Nn+β·H,β for any ample divisor H.
• Ln,β is zero for |n| � 0, depending on β.

Moreover, we have the following product expansion formula using the above invari-
ants Nn,β , Ln,β:

I(X) =
∏
n>0

exp
(
(−1)n−1Nn,0q

n
)n

P (X),(3.1)

P (X) =
∏

n>0,β>0

exp
(
(−1)n−1Nn,βq

ntβ
)n

⎛
⎝∑

n,β

Ln,βq
ntβ

⎞
⎠ .(3.2)

Remark 3.2. Here the ‘Euler number version’ of DT invariants and PT invari-
ants mean the invariants replacing In,β , Pn,β by the topological Euler numbers
χ(In(X, β)), χ(Pn(X, β)) without the Behrend weight. As we discussed in Subsec-
tion 2.4 and Remark 2.21, the latter invariants are closely related to In,β , Pn,β ,
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respectively. On the other hand, in order to obtain the results in [77], [76] for
the honest DT invariants and PT invariants, we need to prove a result similar to
Theorem 2.12 for the moduli spaces of objects in the derived category. This was
announced by Behrend-Getzler [10], but later Bridgeland [19] showed Theorem 3.1
without relying on [10]. However the geometric meaning of Ln,β is not obvious by
the method of [19]. Although the paper [10] is not available, almost the same result
is obtained by Ben-Bassat, Brav, Bussi, and Joyce [12].

The PT conjecture and the MNOP rationality conjecture easily follow from the
properties of Nn,β , Ln,β in the above theorem, and the product expansion formulas
(3.1), (3.2).

Corollary 3.3. (Toda [77], [76] (Euler number version), Bridgeland [19])
Conjecture 2.16 (i) and Conjecture 2.22 are true.

The notion of ‘stability conditions on the derived category’ plays a key role in
the proof of Theorem 3.1, which we explain in detail below.

3.2. Stability conditions. There exists the classical notion of ‘stability’ on vector
bundles on algebraic curves. By definition, a vector bundle E on an algebraic curve
is called (semi)stable if for any non-trivial subvector bundle 0 �= F ⊂ E, the
following inequality holds:

degF

rankF
< (≤)

degE

rankE
.

The notion of Bridgeland stability conditions on triangulated categories generalizes
the notion of (semi)stable vector bundles on algebraic curves to arbitrary triangu-
lated categories. Its original motivation was to give a mathematical formulation of
Π-stability [23] in string theory. The mathematical definition is given as follows.

Definition 3.4 ([17]). Let D be a triangulated category. A stability condition on
D consists of data (Z,A) of a group homomorphism Z : K(D) → C together with
the heart of a bounded t-structure A ⊂ D, satisfying the following:

• For any non-zero object E ∈ A, we have

Z(E) ∈ H := {r exp(iπφ) : r > 0, 0 < φ ≤ 1}.(3.3)

• For any E ∈ A, there exists a filtration (called Harder-Narasimhan filtra-
tion) in A

0 = E0 ⊂ E1 ⊂ · · · ⊂ EN = E

such that each Fi = Ei/Ei−1 ∈ A is Z-semistable satisfying argZ(Fi) >
argZ(Fi+1).

Here K(D) is the Grothendieck group of D. Also we say E ∈ A is Z-(semi)stable
if for any subobject 0 �= F ⊂ E, we have argZ(F ) < (≤) argZ(E). Here by the
condition (3.3), we define argZ(∗) in (0, π]. We give some examples.

Example 3.5. (i) Let X be a smooth projective 3-fold and let Coh≤1(X) be the
abelian category of coherent sheaves on X whose supports have dimension less than
or equal to one. We set D = Db Coh≤1(X), and define the group homomorphism
Z : K(D) → C determined by the ample divisor H:

Z(E) = − ch3(E) +H · ch2(E)
√
−1.
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Then (Z,Coh≤1(X)) is a stability condition on D. If E is supported on a smooth
curve C ⊂ X scheme theoretically, then E is Z-(semi)stable if and only if E is a
(semi)stable sheaf on C in the classical sense.

(ii) Let A be a finite dimensional algebra, let modA be the abelian category of
finitely generated right A-modules and set D = Db modA. Then there exist finite
numbers of simple objects S1, · · · , Sk ∈ modA such that K(D) is a free abelian
group with basis [Si]. We choose zi ∈ H, and set Z : K(D) → C by Z([Si]) = zi.
Then (Z,modA) is a stability condition on D.

We consider the following property of a stability condition σ = (Z,A) on D:

• (numerical property): The group homomorphism Z : K(D) → C factors
through the fixed surjective group homomorphism cl : K(D) → Γ for a
fixed free abelian group Γ.

• (support property): By fixing a norm on ‖∗‖ on ΓR, we have the following
finiteness:

sup

{
‖cl(E)‖
|Z(E)| : E ∈ A is Z-semistable

}
< ∞.(3.4)

As for the first ‘numerical property’, for example in the case of D = Db Coh(X),
we usually set (Γ, cl) by the following:

Γ = Im(ch: K(X) → H∗(X,Q)), cl = ch .(3.5)

The second ‘support property’ is a little technical condition, and we omit a detailed
explanation. We denote by Stab(D) the set of stability conditions on a triangulated
category D satisfying the above properties. (Although the set Stab(D) depends on
(Γ, cl) by the definition, we do not include these symbols in Stab(D) for simplicity.)
By Bridgeland [17], it is shown that Stab(D) has a natural topology. Indeed, the
following theorem holds:

Theorem 3.6 ([17]). The forgetful map

Stab(D) → Γ∨
C , (Z,A) 
→ Z(3.6)

is a local homeomorphism. In particular, Stab(D) has a structure of a complex
manifold.

Remark 3.7. The support property we put above was not considered in Bridge-
land’s original paper [17]. Without this property, the forgetful map is only a local
homeomorphism onto some vector subspace of Γ∨

C
. (In fact, the main theorem

of [17] is stated like that.) The support property was introduced by Kontsevich-
Soibelman [40], which ensured the forgetful map (3.6) to be a local homeomorphism.

Let us consider Example 3.5 (ii) to observe the above theorem. We set D =
Db modA as in Example 3.5 (ii), and set (Γ, cl) = (K(D), id). Then, there is
a one-to-one correspondence between stability conditions (Z,A) ∈ Stab(D) with
A = modA and points in Hk. In particular, the inner points of Hk give an open
complex submanifold of Stab(D). However, Hk has boundaries. The heart of a
t-structure of a stability condition after crossing the boundary is no longer modA,
and some other heart B appears. If B is also written as B = modB for a finite
dimensional algebra B, then again the stability conditions of the form (Z,modB)
are one-to-one correspondence with the points in Hk, which determine another
chamber in Stab(D). In this way, we may have the chamber structure on Stab(D)
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such that each chamber corresponds to the heart of a t-structure. This picture is
not true in general, but provides an amenable model to have an understanding of
the complex manifold Stab(D).

Suppose that D = Db Coh(X) and (Γ, cl) is given by (3.5). In this case, we denote
Stab(X) := StabDb Coh(X). This complex manifold is in particular important
when X is a Calabi-Yau manifold. In this case, the universal covering space of the
moduli space of complex structures of the manifold X∨ mirror to X is expected
to be embedded into Stab(X). Moreover, this embedding should be described by
the solutions of the Picard-Fuchs equation which the period map of X∨ satisfies.
However, it is quite difficult to understand the geometric structure of Stab(X),
and at this moment the satisfactory answers are obtained only in the cases of
dimX = 1 [17], X is a K3 surface or an abelian surface [18], X is a local Calabi-
Yau manifold [16], [73], [75], [4].

Remark 3.8. If X is a projective Calabi-Yau 3-fold, it is not even known whether
Stab(X) is non-empty or not. In fact if dimX ≥ 2, one can show that there is no
stability condition (Z,A) on Db Coh(X) with A = Coh(X) (cf. [74, Lemma 2.7]).
In the dimX = 2 case, one can construct stability conditions by taking the heart
to be the tilting of Coh(X) (cf. [18], [2]), which requires the Bogomolov inequality
among Chern numbers of semistable sheaves. In the dimX = 3 case, we conjectured
in [5] that the stability conditions are constructed by taking the double tilting of
Coh(X), which we explain in Section 5 in detail.

3.3. The idea of the proof of Theorem 3.1. Let X be a Calabi-Yau 3-fold. The
DT invariant In,β and the PT invariant Pn,β count curves on X, and at the same
time count ideal sheaves of subschemes, two term complexes (2.9), respectively.
The idea of the proof of Theorem 3.1 is to regard these objects as stable objects
in the derived category of coherent sheaves Db Coh(X) with respect to different
stability conditions. Below, we explain how the above idea is related to the DT/PT
correspondence.

Remark 3.9. In this subsection, we just explain a rough idea, which is not math-
ematically rigorous. For example, as we stated in Remark 3.8, the existence of a
Bridgeland stability condition on a Calabi-Yau 3-fold is not known, but we ignore
this issue for a moment.

First, suppose that there is a stability condition σI on Db Coh(X) such that any
ideal sheaf IC for a one dimensional subscheme C ⊂ X is σI -stable. We have the
surjection s : OX → OC associated to IC , and (OC , s) is a stable pair in the sense of
Definition 2.18 if and only if OC is pure one dimensional. Suppose that OC is not
pure one dimensional, and let Q ⊂ OC be the maximum zero dimensional subsheaf.
Then there is an exact triangle in Db Coh(X)

Q[−1] → IC → IC′ .

Here C ′ is the one dimensional subscheme of X defined by OC′ = OC/Q. The
above exact triangle is expected to destabilize IC with respect to another stability
condition σP on Db Coh(X). Thus we consider an exact triangle given by a ‘flip’
of the above exact triangle:

IC′ → E → Q[−1].
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In a typical situation, the object E ∈ Db Coh(X) is σP -stable, and isomorphic to
the two term complex (2.9). In this way, σI may correspond to the DT invariants,
σP may correspond to the PT invariants, and the comparison of these stability
conditions may be relevant to prove DT/PT correspondence.

By developing the above discussion, we would like to approach Theorem 3.1
following the steps below:

• For each σ = (Z,A) ∈ Stab(X) and v ∈ H∗(X,Q), we construct the DT
type invariant

DTσ(v) ∈ Q.(3.7)

It counts Z-semistable objects E ∈ A satisfying ch(E) = v.

Remark 3.10. Here we need to construct the moduli spaces of Bridgeland semistable
objects in order to construct the invariant (3.7). The existence of such moduli
spaces is not known in general, but in some particular case, for example in [72], the
moduli spaces of Bridgeland semistable objects are realized as algebraic stacks of
finite type.

Remark 3.11. Here we remark that, although the invariants In,β and Pn,β are inte-
gers, the invariant DTσ(v) obtained in (3.7) should be a rational number in general.
This is due to the fact that, while there exist no non-trivial automorphisms of ideal
sheaves and two term complexes (2.9), the semistable objects which contribute to
(3.7) may not be necessarily stable, hence there may exist non-trivial automor-
phisms. The construction of the invariant DTσ(v) in this case requires the motivic
Hall algebra, as we discussed in Remark 2.15 for generalized DT invariants.

• Let v ∈ H∗(X,Q) be a cohomology class given as the right-hand side of
(2.2). Then, we try to find stability conditions σI , σP such that the follow-
ing holds:

DTσI
(v) = In,β , DTσP

(v) = Pn,β .

Moreover, we try to find another σL ∈ Stab(X) such that Ln,β := DTσL
(v)

satisfies the properties required in Theorem 3.1.
• We investigate how the invariant DTσ(v) behaves if we change σ. In general,
there exist real codimension one submanifolds (walls) in Stab(X) such that
the invariant DTσ(v) is constant if σ is contained in a connected component
(chamber) of the complement of walls but jumps if it crosses a wall. We
then try to describe the change of DTσ(v) under wall-crossing (wall-crossing
formula), and apply it to obtain relations among In,β , Pn,β , and Ln,β . We
then try to show that these relations imply the formulas (3.1), (3.2) in
Theorem 3.1.

3.4. The issues and their solutions. There exist several technical obstructions
to realize the steps in the previous subsection in a mathematically rigorous way.
The largest obstruction is, as we stated in Remark 3.8, quite difficult to construct
Bridgeland stability conditions. It is easy to construct stability conditions on D =
Db Coh≤1(X) as discussed in Example 3.5 (i), but there exist many more objects in
Db Coh(X), and the construction of stability conditions on it is much harder than
Example 3.5. However, if we just focus on the proof of Theorem 3.1, we do not
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have to consider all the objects in Db Coh(X). In fact, it is enough to consider the
following triangulated subcategory of Db Coh(X):

DX := 〈OX ,Coh≤1(X)〉tr ⊂ Db Coh(X).

Here for a set of objects S ⊂ Db Coh(X), we denote by 〈S〉tr the smallest triangu-
lated subcategory of Db Coh(X) which contains S. The triangulated category DX

is called the category of D0-D2-D6 bound states using the terminology in string
theory. For example, it is easy to see that the ideal sheaves IC for one dimensional
subschemes C ⊂ X, two term complexes (2.9), are objects in DX . It is easier to
construct Bridgeland stability conditions on DX , so we can discuss the previous
steps replacing Db Coh(X) by DX .

Now the situation is easier by considering DX , but still there exist some problems.
There are two issues. One of them is that, while it is possible to construct a stability
condition corresponding to σP , it is more difficult to construct a stability condition
corresponding to σI . Another one concerns the last step on the derivation of the
wall-crossing formula. If we apply the arguments of Joyce [34] and Joyce and
Song [35], we see that the combinatorial data of numerical classes associated to
wall-crossing contribute to the wall-crossing formula of DT type invariants. This
combinatorial data is still too complicated for stability conditions on DX to write
down.

The notion of weak stability conditions on triangulated categories was introduced
in [76] to solve these issues. Let D be a triangulated category and Γ a finitely gen-
erated free abelian group. We fix a group homomorphism cl : K(D) → Γ together
with a saturated filtration

0 ⊂ Γ0 ⊂ Γ1 ⊂ · · · ⊂ ΓN = Γ.

A weak stability condition on D is defined to be a pair (Z,A) satisfying the similar
axioms of Bridgeland stability conditions. Here A ⊂ D is the heart of a t-structure,
and Z is an element

Z = {Zi}Ni=0 ∈
N∏
i=0

Hom(Γi/Γi−1,C).

If the filtration Γ• is trivial, i.e., N = 0, the notion of weak stability conditions is
essentially the same as that of Bridgeland stability conditions. If we set StabΓ•(D)
to be the set of weak stability conditions on D satisfying the support property, one
can show that it has a structure of a complex manifold similarly to the Bridgeland
stability. (The property corresponding to the numerical property is automatically
satisfied by the definition.) This space is expected to appear as limiting degen-
eration points of the space of Bridgeland stability conditions Stab(D), and the
choice of a filtration Γ• determines the direction of the degeneration. However, a
mathematically rigorous result on it is not available at this moment.

The result of Theorem 3.1 was obtained by applying the steps in the previous
subsection for the space of weak stability conditions on DX . More precisely, in the
case of D = DX for a Calabi-Yau 3-fold X, we set

Γ = H0(X,Z)⊕H2(X,Z)fr ⊕H0(X,Z)
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and set cl as cl(E) = (ch3(E), ch2(E), ch0(E)). Here (∗)fr means taking the free
quotient. For the derivation of the formula (3.1), we set the filtration Γ• as

Γ0 = H0(X,Z), Γ1 = H0(X,Z)⊕H2(X,Z)fr, Γ2 = Γ

and for the derivation of the formula (3.2), we set the filtration Γ• as

Γ0 = H0(X,Z)⊕H2(X,Z)fr, Γ1 = Γ.

The above technical issues are settled using the above setting.

3.5. The invariant Nn,β. Finally, in this section, we explain the invariant Nn,β ∈
Q which appears in Theorem 3.1. This invariant is a particular case of generalized
DT invariants discussed in Remark 2.15, and appears as the difference of rank
one DT type invariants under wall-crossing in the weak stability conditions on
DX . The geometric meaning of the invariant Nn,β is that it counts one dimensional
semistable sheaves F satisfying the numerical condition (2.8). More precisely, let H
be an ample divisor on X and let MH

n (X, β) be the moduli stack of H-semistable
sheaves F ∈ Coh≤1(X) satisfying the numerical condition (2.8). Here, the H-
semistable sheaves are defined as in Example 3.5 (i). If we assume that MH

n (X, β)
is represented by a projective scheme (for example, this is satisfied for a suitable
choice of H if n and β are coprime), then Nn,β is defined in the following way using
the Behrend constructible function χB on MH

n (X, β):

Nn,β =

∫
MH

n (X,β)

χB dχ.(3.8)

The moduli space MH
n (X, β) depends on H, but the invariant Nn,β can be shown

to be independent of H. The invariant Nn,β is an integer if it is defined by (3.8), but
this is a special case of the assumption that Mn(X, β) is realized as a projective
scheme. In general, MH

n (X, β) is an algebraic stack, and one needs to take the
logarithm of MH

n (X, β) in the motivic Hall algebra and integrate the Behrend
function on it to define the invariant Nn,β , as we discussed in Remark 2.15. It
is in general difficult to compute Nn,β , but it is possible to do in some cases by
combining the result of Example 2.11 and Theorem 3.1. We give some examples
below (for details, we refer to [35], [81]):

Example 3.12. (i) In the case of β = 0, the invariant Nn,0 is given as follows:

Nn,0 = −χ(X)
∑

k≥1,k|n

1

k2
.

(ii) Let C ⊂ X be a rational curve as in Example 2.7. In this case, the invariant
Nn,d[C] is given as follows:

Nn,d[C] =
1

k2
, k = g.c.d.(n, d).

The invariants Nn,β in the above examples are rational numbers, and the squares
of the integers which divide (n, β) appear in the denominators. This is the property
expected in general, and formulated in the following conjecture (cf. [81, Conjec-
ture 6.3]):



CURVE COUNTING THEORIES ON CALABI-YAU 3-FOLDS 215

Conjecture 3.13. We have the following formula:

Nn,β =
∑

k≥1,k|(n,β)

1

k2
N1,β/k.

The above formula is called a multiple cover formula. Here we remark that the
invariant N1,β is always an integer. By combining the result of Theorem 3.1 and
Conjecture 3.13, the series P (X) is expected to be described in the following way:

P (X) =
∏
β>0

∞∏
j=1

(1− (−q)jtβ)jN1,β

⎛
⎝∑

n,β

Ln,βq
ntβ

⎞
⎠ .

The above formula is shown in [81, Theorem 6.4] to be equivalent to Pandharipande-
Thomas’s strong rationality conjecture [57] of P (X). Also, some special cases of
Conjecture 3.13 are discussed in [65], [66].

4. Other results on DT invariants

The arguments of Theorem 3.1 were later used to show several results on DT
type invariants and Bridgeland stability conditions. Below we give some of them.

4.1. Flop formula of DT invariants. The paper [63] is a continuation of [76],
where we obtained a birational transformation formula of DT invariants using the
wall-crossing phenomena in the category of D0-D2-D6 bound states. Let X be a
Calabi-Yau 3-fold and let f : X → Y be a flopping contraction. By definition, f is
isomorphic in codimension one with relative Picard number one and Y has at worst
Gorenstein singularities. Given a flopping contraction f , its flop f† : X† → Y is
uniquely constructed. The birational map

φ := f−1 ◦ f† : X† ��� X

is not isomorphic, but Db Coh(X†) and Db Coh(X) are known to be equivalent by
Bridgeland [15]. For a flopping contraction f : X → Y , we define the generating
series I(X/Y ) in the following way:

I(X/Y ) :=
∑

f∗β=0

Iβ(X)tβ.

The following is the main theorem of [63]:

Theorem 4.1 (Toda [63] (Euler number version), Calabrese [20]). We have the
following formula:

I(X/Y ) = i ◦ φ∗I(X
†/Y ),

I(X)

I(X/Y )
= φ∗

I(X†)

I(X†/Y )
.

Here φ∗ and i are variable changes φ∗(β, n) = (φ∗β, n), i(β, n) = (−β, n).

Remark 4.2. Similarly to Theorem 3.1, the result of Theorem 4.1 was first proved for
the Euler number version in [63], and the result for the honest DT invariants relied
on [10]. Later Theorem 4.1 was proved without relying on [10] by Calabrese [20]
following the argument of Bridgeland [19].
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Remark 4.3. In the same situation as above, Van den Bergh [21] constructed the
sheaf of non-commutative algebras AY on Y , and showed the derived equivalence

Db Coh(X)
∼→ Db Coh(AY )

∼→ Db Coh(X†).

The relationship between DT invariants onX and ‘non-commutative DT invariants’
which count AY -modules are also known at least for Euler number version [63]. The
non-commutative DT invariants for the local (−1,−1)-curve are discussed in [60],
[53].

4.2. Stable pairs on local K3 surfaces. In this subsection, we introduce the
result of [82] on the Euler numbers of moduli spaces of stable pairs on local K3
surfaces. Let S be a K3 surface, i.e., two dimensional Calabi-Yau manifold, and
set X = S × C. Although X is a Calabi-Yau manifold, it is not compact. Also, S
admits deformations to non-algebraic K3 surfaces. Therefore, if we define DT in-
variants or PT invariants in a way similar to Subsection 2, (by the invariance under
deformations of complex structures) the resulting invariants are always zero. In this
case, in order to define reasonable invariants, one needs to construct reduced per-
fect obstruction theories on the moduli spaces by reducing the obstruction theory,
and integrate the associated reduced virtual fundamental cycles. One can define
reduced DT invariants or PT invariants by integrating the reduced virtual cycles.
We refer to [49] for details. These reduced invariants are not invariant under defor-
mations of complex structures, but invariant if the given curve classes are Hodge
(1, 1)-type under deformations. It is not known whether these reduced DT (PT)
invariants are described by Behrend functions or not, but they coincide with topo-
logical Euler numbers χ(In(X, β)), χ(Pn(X, β)) if the curve class β ∈ H2(X,Z)
is irreducible. Here β is called irreducible if it is not written as β = β1 + β2 for
effective algebraic one cycle classes β1, β2. By the above reason, instead of the
above reduced invariants, we consider the Euler number version of PT invariants,
and put the following generating series:

Pχ(X) := 1 +
∑

n∈Z,β>0

χ(Pn(X, β))qntβ.

The main result of the paper [82] is to derive the product expansion formula of the
generating series Pχ(X) in terms of invariants counting semistable sheaves with
compact supports on X (the dimensions of the supports are not necessarily less
than or equal to one, and can be two). The latter invariants are closely related to
Euler numbers of Hilbert schemes of points on K3 surfaces. Using this result, we
expect to obtain the Euler number version of the modular invariance conjecture of
PT invariants by Katz-Klemm-Vafa [36].

Below, we introduce invariants counting semistable sheaves on X. Let Cohc(X)
be the category of coherent sheaves on X with compact supports, and let π be the
projection from X to S. Let H be an ample divisor on S, and take a cohomology
class

v = (r, β, n) ∈ H0(S,Z)⊕H2(S,Z)⊕H4(S,Z).

We denote by MH(v) the moduli stack of π∗H-semistable sheaves F ∈ Cohc(X)
with Mukai vector v. Here for an object F ∈ Cohc(X), its Mukai vector is defined
in the following way:

v(F ) := ch(π∗F )
√
tdS ∈ H∗(S,Z).
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The π∗H-semistability on Cohc(X) is defined by reduced Hilbert polynomials with
respect to π∗H similarly to the classical Gieseker semistability (cf. [33]). If the
moduli stack MH(v) is realized as a scheme, and any closed point of MH(v) cor-
responds to a π∗H-stable sheaf, then MH(v) is written as follows:

MH(v) = MH(v)× C.(4.1)

HereMH(v) is a (v, v)/2+1-dimensional holomorphic symplectic manifold (cf. [51]).
The inner product on H∗(S,Z) is defined in the following way, and called a Mukai
product:

((r1, β1, n1), (r2, β2, n2)) = β1β2 − r1n2 − r2n1.

Under the above setting, we define the invariant J(v) ∈ Q as follows:

J(v) = ‘χ’(MH(v)).(4.2)

Remark 4.4. Here we denoted the Euler number of the right-hand side of (4.2)
as ‘χ’ by the following reason. If the moduli stack MH(v) is written as (4.1),
then it is defined to be the usual Euler number J(v) = χ(MH(v)). However,
in general, MH(v) is an algebraic stack of finite type, and we are not able to
define its Euler number if there exist non-trivial stabilizers groups. Hence, we
denote the Euler number which defines J(v) by ‘χ’ to emphasize that it is not a
rigorous definition. In order to give a precise definition, similarly to generalized
DT invariants in Remark 2.15, we need to take the logarithm of MH(v) in the
motivic Hall algebra, and its Euler number. Also, similarly to the invariant Nn,β ,
the invariant J(v) is also independent of a choice of H. For the details, see [82].

In general it is difficult to compute the invariant J(v), but we will later give a
conjecture on the value of J(v) in Conjecture 4.9 as an analogue of Conjecture 3.13.
We first state the main result of [82]:

Theorem 4.5 (Toda [82]). We have the following product expansion formula:

Pχ(X) =
∏

r≥0,β>0,n≥0

exp
(
J(r, β, r + n)qntβ

)n+2r

·
∏

r>0,β>0,n>0

exp
(
J(r, β, r + n)q−ntβ

)n+2r
.(4.3)

Remark 4.6. If the curve class β is irreducible, then χ(Pn(X, β)) was computed by
Kawai-Yoshioka [37]. The result of Kawai-Yoshioka [37] is recovered by Theorem 4.5
together with the identities (4.4), (4.5) discussed later.

Remark 4.7. Similarly to Theorem 3.1, the result of Theorem 4.5 was proved using
the wall-crossing argument in the space of weak stability conditions on the derived
category. However, as the right-hand side of Theorem 4.5 contains contributions
from sheaves with two dimensional supports, it is not enough to consider the cat-
egory DX of D0-D2-D6 bound states, and we need to consider the triangulated
category which contains two dimensional sheaves.

By the identity (4.3), the computation of χ(Pn(X, β)) is equivalent to that of
J(v). Let us discuss the invariant J(v) in more detail. Suppose that v ∈ H∗(S,Z)
is primitive. Then for a suitable H, MH(v) is written as (4.1). Furthermore, as the
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holomorphic symplectic manifold MH(v) is deformation equivalent to the Hilbert
scheme of points on S (cf. [86]), the invariant J(v) is written as

J(v) = χ(Hilb(v,v)/2+1(S)).(4.4)

The right-hand side of the above identity was computed by Göttsche [29]:

∑
n≥0

χ(Hilbn(S))qn =
∏
n≥1

1

(1− qn)24
.(4.5)

In the case that v ∈ H∗(S,Z) is not primitive, the invariant J(v) has some symmetry
induced by automorphisms of the Mukai lattice H∗(S,Z).

Theorem 4.8 ([82]). Let g ∈ Aut(H∗(S,Z)) be an isomorphism of the Mukai lattice
preserving the weight two Hodge structure. Then we have the following formula:

J(gv) = J(v).

Here the weight two Hodge structure on H∗(S,Z) is defined by

H∗2,0 = H2,0, H∗0,2 = H0,2, H∗1,1 = H0,0 ⊕H1,1 ⊕H2,2.

Still Theorem 4.8 does not give the complete computation of J(v), but we have the
following conjecture on the value of J(v) based on the above result and Conjec-
ture 3.13 (cf. [82, Conjecture 3.1]):

Conjecture 4.9. If v ∈ H∗(S,Z) is an algebraic class, we have the following
formula:

J(v) =
∑

k≥1,k|v

1

k2
χ(Hilb(v/k,v/k)/2+1(S)).

If we assume Theorem 4.5 and Conjecture 4.9, the series Pχ(X) is written as

Pχ(X) =
∏

r≥0,β>0,n≥0

(1− tβqn)−(n+2r)χ(Hilbβ2/2−r(n+r)+1(S))

·
∏

r>0,β>0,n>0

(1− tβq−n)−(n+2r)χ(Hilbβ2/2−r(n+r)+1(S)).(4.6)

As we discussed in [82, Section 6], the identity (4.6) resembles the automorphic form
given by the Borcherds infinite product [14], and gives the Euler number version of
the Katz-Klemm-Vafa [36] conjecture on the modularity of the generating series of
PT invariants.

5. Bogomolov-Gieseker type inequality conjecture

and its application

We have obtained several results on DT invariants by using weak stability con-
ditions. However, in order to obtain further applications, we need to construct the
honest Bridgeland stability conditions. In this section, we explain the candidate
of Bridgeland stability conditions on smooth projective 3-folds proposed by Bayer,
Macri, and the author [5].
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5.1. Neighborhood at the large volume limit. Let X be a smooth projec-
tive variety of dimension d. We would like to construct stability conditions on
Db Coh(X) in the sense of Definition 3.4. As we mentioned in Remark 3.8, we
cannot take the heart of a t-structure to be Coh(X) if d ≥ 2. However, there is a
candidate of the group homomorphism Z in the context of string theory. We take
B+

√
−1ω ∈ H2(X,C) such that ω is ample. Also, we set the group homomorphism

ZB,ω : K(X) → C as follows:

ZB,ω(E) = −
∫
X

e−iω chB(E).

Here chB(E) = e−B ch(E). We expect that the following conjecture holds:

Conjecture 5.1. There exists the heart of a bounded t-structure AB,ω ⊂ Db Coh(X)
such that the following holds:

σB,ω = (ZB,ω,AB,ω) ∈ Stab(X).(5.1)

The set of stability conditions obtained as above is called the neighborhood at
the large volume limit. The ω = ∞ is the large volume limiting point. If d = 1, we
have

ZB,ω(E) = − deg(E) + (B +
√
−1ω) rank(E)

and it is easy to check that AB,ω = Coh(X) satisfies the condition (5.1).
If d = 2, we have

ZB,ω(E) = − chB2 (E) +
ω2

2
chB0 (E) +

√
−1 chB1 (E)ω.

In this case, AB,ω is obtained as a tilting of Coh(X). We first explain the tilting
of Coh(X) for a general d. We define the function μω on Coh(X) \ {0} as follows:

μω(E) :=
c1(E) · ωd−1

rank(E)
∈ R ∪ {∞}.

Here we set μω(E) = ∞ if rank(E) = 0. The function μω determines the μω-
stability on Coh(X) similarly to the classical stability.

Definition 5.2. An object E ∈ Coh(X) is called μω-semistable if for any subobject
0 �= F ⊂ E, we have the inequality μω(F ) ≤ μω(E).

Remark 5.3. In the case of d ≥ 2, the μω-semistability does not determine a sta-
bility condition on Coh(X) in the sense of Definition 3.4. For instance, the group
homomorphism

Z : K(X) 	 E 
→ −c1(E) · ωd−1 +
√
−1 rank(E) ∈ C

satisfies Z(Ox) = 0, hence does not satisfy the axioms in Definition 3.4.

Using the μω-stability, we determine the pair of subcategories (TB,ω,FB,ω) on
Coh(X) as follows:

TB,ω := 〈E ∈ Coh(X) : E is μω-semistable with μω(E) > Bωd−1〉ex,
FB,ω := 〈E ∈ Coh(X) : E is μω-semistable with μω(E) ≤ Bωd−1〉ex.

Here 〈∗〉ex means the extension closure, i.e., the smallest extension closed subcate-
gory of Coh(X) which contains ∗. By the existence of HN filtrations with respect
to the μω-stability, it is easy to check that
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• for any T ∈ TB,ω and F ∈ FB,ω, we have Hom(T, F ) = 0.
• For any E ∈ Coh(X), there exists an exact sequence 0 → T → E → F → 0
such that T ∈ TB,ω, F ∈ FB,ω.

A pair of subcategories (TB,ω,FB,ω) satisfying the above conditions is called a
torsion pair (cf. [32]). Given a torsion pair, we have the associated heart of a
t-structure

BB,ω = 〈FB,ω[1], TB,ω〉ex ⊂ Db Coh(X).

This is called the tilting of Coh(X) with respect to the torsion pair (TB,ω,FB,ω).
In the case of d = 2, we can construct stability conditions by using the above heart
of the t-structure:

Proposition 5.4. Let X be a smooth projective surface. We take B +
√
−1ω ∈

H2(X,C) such that ω is ample. Then we have the following:

(ZB,ω,BB,ω) ∈ Stab(X).

We briefly explain the above proposition. First, we immediately have ImZB,ω(E)
≥ 0 for any object 0 �= E ∈ BB,ω by the construction. In order to show the condition
(3.3) in Definition 3.4, we need to show that ReZB,ω(E) < 0 if ImZB,ω(E) =
0. This is proved using the Hodge index theorem and the following Bogomolov-
Gieseker inequality. We refer to [18], [2] for details.

Theorem 5.5 (Bogomolov [13], Gieseker [28]). Let X be a smooth projective d-fold
with d ≥ 2. We take B +

√
−1ω ∈ H2(X,C) such that ω is an ample class. Then

for any torsion free μω-semistable sheaf F ∈ Coh(X), we have

ωd−2
(
chB1 (F )2 − 2 chB0 (F ) chB2 (F )

)
≥ 0.(5.2)

It is not difficult to show the Harder-Narasimhan property once the condition
(3.3) is proved. The proof of the support property in (3.4) requires more argument,
and is proved in [83].

5.2. The BG type inequality conjecture for smooth projective 3-folds.
In this subsection, we set d = 3 and assume that B, ω are defined over rational
coefficients for some technical reason. In this case, ZB,ω is as follows:

ZB,ω(E) = − chB3 (E) +
ω2

2
chB1 (E) +

√
−1

(
ω chB2 (E)− ω3

6
chB0 (E)

)
.(5.3)

Contrary to the d = 2 case, the pair (ZB,ω,BB,ω) does not satisfy the condition
(3.3). Therefore, we need to do one more tilting of BB,ω. A hint for the further
tilting is the following lemma:

Lemma 5.6. For an object 0 �= E ∈ BB,ω, one of the following conditions holds:

• ω2 chB1 (E) > 0.

• ω2 chB1 (E) = 0, ImZB,ω(E) > 0.

• ω2 chB1 (E) = ImZB,ω(E) = 0, −ReZB,ω(E) > 0.

The proof is similar to Proposition 5.4, and uses the inequality in Theorem 5.5.
We refer to [5, Lemma 3.2.1] for details. Lemma 5.6 means that the triple

(ω2 chB1 (E), ImZB,ω(E),−ReZB,ω(E))
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behaves as if it were a triple

(rank(F ), ch1(F )ω, ch2(F ))

for a coherent sheaf 0 �= F on an algebraic surface S. Therefore, by mimicking the
μω-stability on algebraic surfaces, we consider the following function on BB,ω \{0}:

νB,ω(E) :=
ImZB,ω(E)

ω2 chB1 (E)
∈ Q ∪ {∞}.

Here we set νB,ω(E) = ∞ if ω2 chB1 (E) = 0.

Definition 5.7. An object E ∈ BB,ω is called νB,ω-semistable if for any subobject
0 �= F ⊂ E in BB,ω, we have the inequality νB,ω(F ) ≤ νB,ω(E).

Similarly to the μω-stability, we can show the existence of Harder-Narasimhan
filtrations with respect to the νB,ω-stability using Lemma 5.6. Therefore, similarly
to the torsion pair (TB,ω,FB,ω) on Coh(X), we can define the torsion pair on BB,ω

as follows: :

T ′
B,ω := 〈E ∈ BB,ω : E is νB,ω-semistable νB,ω(E) > 0〉ex,

F ′
B,ω := 〈E ∈ BB,ω : E is νB,ω-semistable νB,ω(E) ≤ 0〉ex.

By taking the tilting with respect to the above torsion pair, we obtain the heart of
a t-structure

AB,ω := 〈F ′
B,ω[1], T ′

B,ω〉ex ⊂ Db Coh(X).(5.4)

By the construction, we have ImZB,ω(E) ≥ 0 for any E ∈ AB,ω. Together with
Bayer and Macri, the author conjectured that the above hearts of the t-structures
give Bridgeland stability conditions on smooth projective 3-folds:

Conjecture 5.8 (Bayer-Macri-Toda [5]). Let X be a smooth projective 3-fold, and
take B +

√
−1ω ∈ H2(X,C) such that ω is an ample class. Then the following

holds:

(ZB,ω,AB,ω) ∈ Stab(X).

Here ZB,ω is given by (5.3), and AB,ω is given by (5.4).

In order to show the above conjecture, we need to show that any object 0 �= E ∈
AB,ω satisfying ImZB,ω(E) = 0 satisfies ReZB,ω(E) < 0, similarly to the surface
case. In the surface case, we used Theorem 5.5. Unfortunately a generalization
of Theorem 5.5 which evaluates ch3 is not known. So far, even a conjecture has
not been proposed. However, Conjecture 5.8 led to the following conjectural 3-fold
version of Theorem 5.5:

Conjecture 5.9 (Bayer-Macri-Toda [5]). In the same situation of Conjecture 5.8,
let F ∈ BB,ω be a νB,ω-semistable object with νB,ω(F ) = 0. Then we have the
inequality

chB3 (E) ≤ ω2

18
chB1 (E).(5.5)

Remark 5.10. If Conjecture 5.9 holds, then it is shown in [5] that the pair
(ZB,ω,AB,ω) gives a stability condition on Db Coh(X). On the other hand, in
order to show the latter statement, it is enough to show the weaker inequality
chB3 (E) < ω2 chB1 (E)/2. The coefficient 1/18 in the inequality (5.5) is determined
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so that the equality holds for objects satisfying the equality in the classical BG
inequality (5.2). Also, even if Conjecture 5.9 holds, the support property is not
proved and one cannot conclude Conjecture 5.8.

5.3. Evidence of Conjecture 5.9. At this moment, the author does not have
any idea of how to give a complete solution of Conjecture 5.9. For some explicit
examples of smooth projective 3-folds, we have the following results. First, in the
case of X = P3, Conjecture 5.9 was proved by Macri [46]. This was also partially
proved in [5]. The idea is to set the non-commutative algebra A as

A = End(OP3 ⊕OP3(1)⊕OP3(2)⊕OP3(3))

and compare mod(A) with the heart AB,ω on Db Coh(P3) through the Beilinson
equivalence [11]

Db Coh(P3) ∼= Db mod(A).

It is easy to construct stability conditions on mod(A), and their existence is used
to show Conjecture 5.9. A similar idea was used by Schmidt [59] to show Conjec-
ture 5.9 for the smooth quadric.

Conjecture 5.9 is in particular important for Calabi-Yau manifolds. In 2013,
in the works [44], [45], Maciocia-Piyaratne proved Conjecture 5.9 for principally
polarized abelian 3-folds with Picard number one. As abelian varieties have trivial
canonical divisors, they are closer to Calabi-Yau manifolds than the above P3 or
the quadric. Their work makes progress toward the construction problem of sta-
bility conditions on Calabi-Yau 3-folds. The idea of Maciocia-Piyaratne was to use
Fourier-Mukai transforms between abelian varieties and their dual abelian varieties.
In the case of principally polarized abelian varieties, their dual abelian varieties are
isomorphic to the original abelian varieties, so it gives an autoequivalence of the
derived category. Maciocia-Piyaratne proved that the hearts of the form AB,ω are
preserved by the autoequivalences given by Fourier-Mukai transforms. The proof
of this fact is quite technical, but this enables us to reduce the evaluation of ch3
in Conjecture 5.9 to the classical BG inequality in Theorem 5.5, and prove Conjec-
ture 5.9 in this case.

As another kind of evidence, one can (almost) prove the Fujita conjecture for
smooth projective 3-folds assuming Conjecture 5.9. Here the Fujita conjecture is
stated as follows:

Conjecture 5.11 (Fujita [27]). Let X be a smooth projective d-fold, and let L be
an ample divisor on X. Then

• KX + (d+ 1)L is free.
• KX + (d+ 2)L is very ample.

In the two dimensional case, the above conjecture was proved by Reider [58]
by applying Theorem 5.5. In the three dimensional case, the freeness part of the
above conjecture is proved (cf. [24], [38]). However, the very ampleness part is still
an open problem. As Conjecture 5.9 is regarded as a three dimensional version
of Theorem 5.5, one naturally expects that Conjecture 5.9 would imply the Fujita
conjecture for 3-folds, similarly to the result of Reider [58]. it would imply the
Fujita conjecture for 3-folds, similarly to the result of Reider [58]. Indeed, we have
the following result:
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Theorem 5.12 (Bayer-Bertram-Macri-Toda [3]). Let X be a smooth projective 3-
fold satisfying Conjecture 5.9. Then for any ample divisor L on X, we have the
following:

• KX + 4L is free.
• KX + 6L is very ample.

Remark 5.13. As the Fujita conjecture states that KX + 5L is very ample, the
result of Theorem 5.12 is slightly weaker than the Fujita conjecture. However, for
instance, if we assume that the intersection number of KX with any curve is an
even number (e.g., X is a Calabi-Yau manifold), then one can also conclude that
KX + 5L is very ample.

In the next subsection, we explain another example of this kind of evidence of
Conjecture 5.9.

5.4. Conjecture 5.9 and the Denef-Moore conjecture. Conjecture 5.9 also
implies an interesting relationship between invariants counting two dimensional
semistable sheaves on Calabi-Yau 3-folds and curve counting invariants. This is
a conjecture discussed by Denef-Moore [22] in the context of string theory, and
has a close relation to the Ooguri-Strominger-Vafa (OSV) conjecture in [54]. Here
the OSV conjecture is (here we state a mathematically non-rigorous way using the
terminology of string theory) a conjectural approximation

ZBH ∼ |Ztop|2.(5.6)

The left-hand side is the partition function of black hole entropy, and the right-hand
side is the partition function of topological string. A mathematical interpretation of
the above conjecture is a certain approximation between the generating series of DT
invariants counting two dimensional torsion sheaves on Calabi-Yau 3-folds and the
square of the generating series of GW invariants counting curves. Denef-Moore [22]
proposed a certain conjectural relationship between DT invariants counting two
dimensional torsion sheaves and DT invariants counting curves, and used it to give
an interpretation of the approximation (5.6). Below, we discuss Denef-Moore’s
conjecture.

Let X be a projective Calabi-Yau 3-fold, and let H be an ample divisor on X.
For simplicity, we assume that Pic(X) is generated by OX(H). (For example, a
quintic hypersurface in P4 is such an example.) For given m ∈ Z≥1, β ∈ H2(X,Q)
and n ∈ Q, let

M(0,m[H],−β,−n)(5.7)

be the moduli stack of H-semistable sheaves E ∈ Coh(X) satisfying the following
numerical condition:

ch(E) = (0,m[H], β, n) ∈ H0(X)⊕H2(X)⊕H4(X)⊕H6(X).

Here the H-semistability is the classical H-Gieseker stability (cf. [33]), and we have
regarded β ∈ H4(X,Q), n ∈ H6(X,Q) by the Poincaré duality. By the condition of
the Chern character, the sheaf E is a torsion sheaf with two dimensional support,
and the fundamental cycle [E] determined by E is an element of the linear system
|mH|. If the stack (5.7) is realized as a projective scheme, then the DT invariant
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counting two dimensional torsion sheaves is defined as follows:

DT(0,m[H], β, n) =

∫
M(0,m[H],β,n)

χB dχ.

Here χB is the Behrend constructible function on M(0,m[H], β, n). In general, the
stack (5.7) is an algebraic stack of finite type, and the invariant DT(0,m[H], β, n) ∈
Q is defined by integrating the Behrend constructible function of the log of (5.7)
in the motivic Hall algebra as in Subsection 3.5. We define the generating series
Zm

D4(X) as follows:

Zm
D4(X) =

∑
β,n

DT(0,m[H],−β,−n)qntβ.(5.8)

This is the generating series corresponding to the left-hand side of (5.6).
On the other hand, we define the following subseries of I(X), P (X):

Im(X) =
∑

(β,n)∈C(m)

In,βq
ntβ , Pm(X) =

∑
(β,n)∈C(m)

Pn,βq
ntβ .

Here C(m) is defined to be

C(m) = {(β, n) : βH < mH3/2, |n| < m2H3/2}.
The generating series related to the right-hand side of (5.6) is given by

Zm
D6−D6

(X) =
∑

m2−m1=m

qH
3(m3

1−m3
2)/6tH

2(m2
1−m2

2)/2wH3m3/6+Hc2(X)m/12

· Im(qw−1, qm2Htw−mH)Pm(qw−1, q−m1Ht−1w−mH).

Denef-Moore’s conjecture [22] is stated as follows:

Conjecture 5.14 (Denef-Moore [22]). For sufficiently large m > 0, we have the
identity

Zm
D4(X) =

∂

∂w
Zm

D6−D6
(X)|w=−1(5.9)

modulo the terms of qntβ with

−H3

24
m3

(
1− 1

m

)
≤ n+

(β ·H)2

2mH3
.(5.10)

Remark 5.15. The left-hand side of (5.9) is the series corresponding to the left-
hand side of (5.6) for m � 0. The identity (5.9) only holds modulo (5.10), but the
left-hand side of (5.9) is expected to be (almost) a Fourier development of a Jacobi
form, and assuming it implies that (5.9) modulo (5.10) almost recovers the left-
hand side of (5.9). On the other hand, the right-hand side of (5.9) can be related
to the square of the generating series of GW invariants if we assume the MNOP
conjecture.

Mathematically, the identity (5.9) indicates a relationship between invariants
counting two dimensional torsion sheaves on Calabi-Yau 3-folds and curve counting
invariants. Conjecture 5.14 was derived from physics arguments in the paper of
Denef-Moore [22], and it was not clear what was mathematically essential. In fact,
Conjecture 5.14 essentially follows from Conjecture 5.9. This fact was proved in
the author’s paper [62].
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Theorem 5.16 (Toda [62]). If Conjecture 5.9 is true, then the Euler number
version of Conjecture 5.14 also holds.

Conjecture 5.9 was proposed independently from Conjecture 5.14, and Theo-
rem 5.16 was not supposed at that time. The result of Theorem 5.16 is an indirect
evidence of Conjecture 5.9.

6. Future subjects

It turns out that Conjecture 5.9 is an important conjecture which derives Fu-
jita conjecture and Denef-Moore conjecture. It is an important subject to solve
this conjecture, while there also exist other important research subjects. We will
describe some of them.

6.1. DT type invariants counting matrix factorizations. The set of stability
conditions which are expected to be constructed via Conjecture 5.8 corresponds to
the ‘neighborhood at the large volume limit’ in terms of string theory. It is also an
important subject to construct limiting stability conditions which are far from the
large volume limit. For example, let X = (W = 0) ⊂ P4 be a quintic hypersurface.
Then, the moduli space of complex structures of a manifold mirror to X becomes:

MK =
[
{ψ ∈ C : ψ5 �= 1}/μ5

]
.

The point ψ = ∞ is the large volume limit. There exist other special points ψ5 = 1
(conifold point), ψ = 0 (Gepner point). Here the Gepner point is the fix point with
respect to the μ5-action.

By the mirror symmetry, the universal covering space of the above MK is ex-
pected to be embedded into Stab(X). The Gepner point corresponds to a certain
special stability condition under this embedding. This is a stability condition which
corresponds to a ‘natural’ stability condition

σG ∈ Stab(HMF(W ))(6.1)

in a certain sense on the right-hand side of the Orlov equivalence [55]

Db Coh(X) ∼= HMF(W ).

Here HMF(W ) is the triangulated category of graded matrix factorizations of W ,
whose objects consist of data

P 0 f→ P 1 g→ P 0(5).

Here each P i is a finitely generated graded free A = C[x1, · · · , x5]-module, f, g are
homomorphisms as graded A-modules, satisfying f ◦ g = ·W , g ◦ f = ·W .

In the paper [67], the author defined some properties which should characterize
σG using the symmetry of μ5, and called stability conditions satisfying such proper-
ties as Gepner type stability conditions. Some evidence of the existence of Gepner
type stability conditions on the category of graded matrix factorizations is given
in [68], [69]. If a Gepner type stability condition (6.1) exists, then it should be
possible to define DT type invariants counting semistable matrix factorizations by
constructing moduli spaces of σG-semistable objects. If one can construct such in-
variants, it should be possible to relate them with the usual DT invariants counting
stable sheaves via wall-crossing phenomena. On the other hand, σG has a symme-
try with respect to μ5 which should lead to certain symmetry among the usual DT
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invariants. It should be an interesting problem to understand the meaning of such
a symmetry.

6.2. Modularity problem of DT invariants counting two dimensional tor-
sion sheaves. As we mentioned in Remark 5.15, the generating series (5.8) is con-
jectured to have a close relationship with Fourier developments of certain Jacobi
forms. It was conjectured by Vafa-Witten [84] that the similar generating series (the
generating series of Euler numbers of moduli spaces of stable sheaves) on smooth
algebraic surfaces have modularity, and are called S-duality conjecture. The mod-
ularity conjecture of the generating series (5.8) is a 3-fold version of Vafa-Witten’s
S-duality conjecture. However, the S-duality conjecture on algebraic surfaces is
an open problem except the special cases such as rational surfaces, K3 surfaces
(cf. [31]), and also the proof all rely on explicit calculations of the generating series.
At this moment, the mathematical origin of the S-duality conjecture is mysterious.
In the 3-fold version of the S-duality conjecture, the sheaves which contribute to
the generating series (5.8) are two dimensional torsion sheaves, whose supports may
have singularities. It is more difficult to count sheaves on singular surfaces than the
case of smooth surfaces. On the other hand, it is known that the difference of the
generating series under a blow-up of a smooth surface is described by a modular
form [85], [43], [30], which gives an indirect evidence of the S-duality conjecture for
algebraic surfaces. In the paper [70], we obtained a flop transformation formula of
the generating series (5.8) under flops betweens Calabi-Yau 3-folds. Under a flop,
the difference of the generating series is described by a Jacobi form, which gives
an indirect evidence of a 3-fold version of the S-duality conjecture. This is a 3-fold
version of the blow-up formula for algebraic surfaces, and a two dimensional tor-
sion sheaf version of Theorem 4.1. Moreover, applying the result of [70], we proved
in [71] that the generating series of Euler numbers of Hilbert schemes of points
on algebraic surfaces with at worst An-type singularities is a modular form. In a
view of 3-fold version of S-duality conjecture, we need to develop counting theory
of sheaves on algebraic surfaces with singularities.
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