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DISCRETE VARIATIONAL DERIVATIVE METHOD—A

STRUCTURE-PRESERVING NUMERICAL METHOD

FOR PARTIAL DIFFERENTIAL EQUATIONS

DAISUKE FURIHATA AND TAKAYASU MATSUO

Abstract. In these decades structure-preserving numerical methods have
been developed widely. In general, “structure-preserving” means that the nu-
merical and discrete scheme inherits some mathematical properties from the
original differential equation. It means that the design process of a structure-
preserving method is a framework to discretize some mathematical properties
of equations.

This manuscript describes discrete variational derivative method, which is
one of structure-preserving methods for partial/ordinary differential equations.
The discrete variational derivative method is a method to design some numer-
ical schemes that inherit some dissipative or conservative properties via dis-
cretization of some relationships between the properties and variational struc-
tures of ordinary differential equations. We explain some basic concepts of a
discrete variational derivative method with some typical examples and show
some recent works based on it.

1. Introduction

Discrete variational derivative method, which is a structure-preserving method
for partial/ordinal differential equations, is a method to design some numerical
schemes that inherit some dissipative or conservative properties from oritinal dif-
ferential equations via discretization of the variational structure of the equations. In
this section, we explain the purpose of the method with an example for the Cahn–
Hilliard equation. The Cahn–Hilliard equation is a model equation for a physical
and chemical decomposition phenomenon. The phenomenon means that a system
with two ingredients transforms itself into two separated phases even its initial state
is almost uniform. Spinodal decomposition is used to designate the phenomenon.
Typical examples are systems with water and oil, compound polymer systems, and
mixed alloy systems. For this phenomenon if we denote the composition ratio dis-
tribution function by u(x, t), where x is space variable and t is time, this function
u(x, t) becomes a step function essentially where even the initial function u(x, 0) is
almost constant. This means that the Cahn–Hilliard equation has strong sensitiv-
ity to any initial perturbation and strong nonlinearity, and we can understand it is
hard to treat for numerical computation.
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For a one dimensional space situation, the Cahn–Hilliard equation is described
by

(1.1)
∂u

∂t
=

∂2

∂x2

(
pu+ ru3 + q

∂2u

∂x2

)
, x ∈ (0, L), t > 0, p < 0, q < 0, r > 0.

We note that we restrict our discussion to one dimensional space problems in this
manuscript for simplicity. There exist two boundary conditions for the Cahn–
Hilliard equation:

(1.2)
∂u

∂x
=

∂3u

∂x3
= 0 at x = 0, L.

The first term puxx, where the coefficient p is negative, in the right-hand side of
the Cahn–Hilliard equation means “reverse” diffusion and causes the sensitivity
for initial perturbation and numerical instability as we described. We note that
uxx = (∂/∂x)2u and we designate differentiation by subscripts like ux = ∂u/∂x
hereafter. To have a glance at this instability, let us see some computations by
the Euler scheme. For computation, we take the space mesh size is Δx = L/N
where L is the width of space domain and N +1 is the number of the mesh points,

and the time mesh size is Δt. The approximate solutions are denoted by Uk
(m) �

u(kΔx,mΔt) (k = 0, 1, . . . , N, m = 0, 1, 2, . . .) . For convenience, we also denote

U (m) =
(
U

(m)
0 , . . . , U

(m)
N

)�
for approximate solutions at time t = mΔt.

Scheme 1 (The Euler scheme for the Cahn–Hilliard equation). For a given initial

datum U (0), approximate solutions U (m) (m = 1, 2, . . .) by the Euler scheme should
satisfy the following equation:

Uk
(m+1) − Uk

(m)

Δt
= δ

〈2〉
k

(
pUk

(m) + r (Uk
(m))3 + q δ

〈2〉
k Uk

(m)
)

(1.3)

for k = 0, . . . , N , with two discrete boundary conditions

(1.4) δ
〈1〉
k Uk

(m) = δ
〈3〉
k Uk

(m) = 0, k = 0, N,

that correspond to the original conditions (1.2). The discrete operators δ
〈p〉
k (p =

1, 2, 3), which are approximations to partial differential operators with second or-

der errors, are defined by δ
〈1〉
k fk = (fk+1 − fk−1)/(2Δx), δ

〈2〉
k fk = (fk+1 − 2fk +

fk−1)/((Δx)2), δ
〈3〉
k fk = (fk+2 − 2fk+1 + 2fk−1 − fk−2)/(2(Δx)3) for a discrete

function fk.

Some computation results by this Euler scheme are shown in Figure 1. The
coefficients of the Cahn–Hilliard equation for the computation are p = −1.0, q =
−0.001, and r = 1.0. As the space parameters, L = 1, N = 50, and Δx = 1/50. For
the time variable, we use two discrete time mesh sizes, Δt = 1/1200 and 1/12000.
In both graphs, the initial function u0(x) is indicated by lines, which is close to the
x-axis, and defined by

(1.5) u0(x) = 0.1 sin(2πx) + 0.01 cos(4πx) + 0.06 sin(4πx) + 0.02 cos(10πx).

The numerical solutions with Δt = 1/1200, which are indicated in the left figure,
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Figure 1. Numerical solutions by explicit Euler scheme: left:
Δt = 1/1200; right Δt = 1/12000.

vibrate and increase rapidly in four or five steps. Even when we take a smaller time
mesh size Δt = 1/12000, the numerical solutions explode in six or seven steps.

We have two counterplans for the instability of numerical solutions. The first
plan is to use some stable adaptive methods for ordinary differential equations
derived by the method of lines. This plan works well in general, but we have to use
quite small time meshes to make computations stable, and the computation cost
may be enormous. Another plan is to design some specialized numerical schemes in
the target partial differential equation and our aim in this manuscript is to describe
a method based on this plan.

To design a specialized scheme for the Cahn–Hilliard equation, we turn our
attention to the free (local) energy G:

(1.6) G(u, ux)
def
=

1

2
pu2 +

1

4
ru4 − 1

2
q(ux)

2.

The integral of this free energy,

(1.7) J [u]
def
=

∫ L

0

G(u, ux) dx,

is called the total energy of the system. Mathematically, the total energy J is a
functional of the solution function u. Using the free energy G, the Cahn–Hilliard
equation (1.1) and the boundary conditions (1.2) can be described by

(1.8)
∂u

∂t
=

∂2

∂x2

(
δG

δu

)
in x ∈ [0, L],

(1.9)
∂G

∂ux
=

∂

∂x

(
δG

δu

)
= 0 at x = 0, L,
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where δG/δu is a variational derivative of G(u, ux) for u, which satisfies the follow-
ing relationship with the total energy J :

J [u+ δu]− J [u](1.10)

=

∫ L

0

(G(u+ δu, ux + δux)−G(u, ux))dx

=

∫ L

0

(
∂G

∂u
δu+

∂G

∂ux
δux

)
dx+O(δu2)

=

∫ L

0

(
∂G

∂u
− ∂

∂x

∂G

∂ux

)
δu dx+

[
∂G

∂ux
δu

]L
0

+O(δu2)

=

∫ L

0

δG

δu
δu dx+

[
∂G

∂ux
δu

]L
0

+O(δu2).

The expression (1.8) using the variational derivative indicates that its solution is
a general gradient flow of the system and the system is dissipative. For some
discussions later, we describe the dissipation property here.

Proposition 1 (Dissipation property of Cahn–Hilliard equation). The solution
u(x, t) of the Cahn–Hilliard equation satisfies the following inequality:

(1.11)
d

dt
J [u] ≤ 0.

Proof. The inequality is proved simply by

d

dt
J [u] =

∫ L

0

δG

δu

∂u

∂t
dx+

[
∂G

∂ux

∂u

∂t

]L
0

(1.12)

= −
∫ L

0

(
∂

∂x

δG

δu

)2

dx+

[(
δG

δu

)
∂

∂x

(
δG

δu

)]L
0

≤ 0.

We use the discrete boundary condition (1.9) to vanish the boundary term. �
The following important feature of the solution derives this dissipation property.

Proposition 2 (L∞ boundedness of the Cahn–Hilliard equation). Let us consider
the Cahn–Hilliard equation (1.1) with the boundary conditinos (1.2). When the
total energy J [u(·, 0)] for the initial state u(x, 0) is finite, the solution u(x, t) of the
Cahn–Hilliard equation is bounded:

(1.13) ‖u(·, t)‖∞ < ∞, t > 0,

where ‖ · ‖p (p = 1, 2, . . . ,∞) is a standard Lp norm defined on domain x ∈ [0, L].

Proof. For any time t > 0, we can obtain the following evaluation:

J [u(·, 0)] ≥ J [u(·, t)] =
∫ L

0

{
1

2
pu2 +

1

4
ru4 − 1

2
q(ux)

2

}
dx(1.14)

≥
∫ L

0

{
−pu2 − 9p2

4r
− 1

2
q(ux)

2

}
dx

= −p‖u‖22 −
9p2L

4r
− q

2
‖ux‖22

by an inequality (pu2)/2 + (ru4)/4 ≥ −pu2 − (9p2)/(4r) and the dissipation prop-
erty of the total energy (1.12). This means J [u(·, 0)] + (9p2L)/(4r) ≥ −p‖u‖22 −
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(q/2)‖ux‖22 and ‖u‖2, ‖ux‖2 < ∞. The boundedness of ‖u‖2 and ‖ux‖2 prove this
proposition with the Sobolev lemma (e.g., John [33]), which indicates ‖u‖2∞ ≤
c
(
‖u‖22 + ‖ux‖22

)
for u(·, t) ∈ H1(0, L). �

This proposition suggests that the dissipation property provides the
boundedness of the solution for the Cahn–Hilliard equation. It also suggests
that some discrete dissipation properties of numerical schemes may provide some
boundedness of numerical solutions. So, we would like to inherit the dissipation
property into numerical schemes from the Cahn–Hilliard equation, and this is a
typical motivation to design some structure-preserving schemes.

Here, we show a specialized scheme, which inherits the dissipation property of
the total energy from the Cahn–Hilliard equation. We, of course, describe how to
design such schemes later.

Scheme 2 (A dissipative numerical scheme for the Cahn–Hilliard equation). For

a given initial state U (0), we can obtain numerical solutions U (m) (m = 1, 2, . . .)
by

Uk
(m+1) − Uk

(m)

Δt
(1.15)

= δ
〈2〉
k

{
p

(
Uk

(m+1) + Uk
(m)

2

)
+ qδ

〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)

+r

(
(Uk

(m+1))3 + (Uk
(m+1))2Uk

(m) + Uk
(m+1)(Uk

(m))2 + (Uk
(m))3

4

)}
for k = 0, · · · , N with the boundary conditions (1.4).

Let us investigate the dissipation property of this scheme. At first, we define a
discrete free energy Gd : RN+1 → R

N+1 by
(1.16)

Gd,k(U
(m))

def
=

p

2
(Uk

(m))2 +
r

4
(Uk

(m))2 − q

2

⎛⎜⎝
(
δ+k Uk

(m)
)2

+
(
δ−k Uk

(m)
)2

2

⎞⎟⎠ ,

where Gd,k(U
(m)) means the k-th element of Gd(U

(m)), δ+k is a forward differ-

ence operator defined by δ+k fk = (fk+1 − fk)/Δx, and δ−k is a backward one

defined by δ−k fk = (fk − fk−1)/Δx. We also define the discrete total energy

Jd[U
(m)]

def
=
∑N

k=0
′′Gd,k(U

(m))Δx with the standard trapezoidal summation,
which is shown by

(1.17)

N∑
k=0

′′fk
def
=

1

2
f0 + f1 + · · ·+ fN−1 +

1

2
fN .

We can find the following discrete dissipation property of this discrete total energy.

Proposition 3 (The discrete dissipation property of total energy for Scheme 2).
The solution of Scheme 2 satisfies the following inequality:

Jd[U
(m+1)] ≤ Jd[U

(m)], m = 0, 1, 2, . . . .

We show a generalized dissipation property for Proposition 6 later and its proof
is also applicable to this proposition.
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Remark 1.1. We use the standard trapezoidal summation rules to approximate
integrals in this manuscript, but, of course, we are able to adopt different rules,
e.g.. a simple summation rule. We note that the simple summation rule is easier
to treat when the boundary condition is periodic.

This discete dissipation property and a discrete Sobolev lemma, which is de-
scribed later, derive the stability of the numerical solutions.

Proposition 4 (L∞ boundedness of the numerical solution of Scheme 2 ). The
solution of Scheme 2 satisfies the following inequality:

(1.18) ‖U (m)‖∞ ≤ 2

[
max(1/L, L/2)

min(−p,−q/2)

{
N∑

k=0

′′Gd,k(U
(0))Δx+

9p2L

4r

}]1/2
for m = 0, 1, 2, · · · , where ‖f‖∞ is a discrete L∞ norm that is defined by ‖f‖∞
def
= max0≤k≤N |fk|.

Proof. In similar ways as in the proof for 2, we can show

(1.19) ‖U (m)‖2H1 ≤ 1

min(−p,−q/2)

{
N∑

k=0

′′Gd,k(U
(0))Δx+

9p2L

4r

}

where ‖f‖H1
def
=

(
‖f‖2 + ‖fx‖2

)1/2
is a discete Sobolev norm, ‖f‖ def

=(∑N
k=0

′′|fk|2Δx
)1/2

, and ‖fx‖
def
=

(∑N−1
k=0 |δ+k fk|2Δx

)1/2
. This inequality and

the discrete Sobolev lemma, which is described in the next lemma, derive the propo-
sition. �

Lemma 1.2 (Discrete Sobolev lemma). For any given f ∈ CN+1, the following
inequality is satisfied:

(1.20) ‖f‖∞ ≤ 2max

(
1√
L
,

√
L

2

)
‖f‖H1 .

where L = NΔx,

It is easy to prove this discrete lemma and please refer to Section 8.6 in John [33]
or Section 3.6.2 in Furihata and Matsuo [20].

Remark 1.3. As we use the discrete Sobolev lemma to prove Proposition 4, the dis-
crete variational derivative method requires some knowledge about discrete function
analysis.

Let us see the numerical solutions by Scheme 2. Figure 2 shows some numerical
solutions of the scheme with a rough time mesh Δt = 1/1000. Other parameters
are not different from ones for the explicit Euler scheme. We can find some phase
separation phenomena in Figure 2 and it suggests that the numerical solutions be-
have naturally in the view point of physics or chemistry. We have some experiences
for computations with different parameters and initial state, and we have not ob-
served any numerical instability for this scheme. The top figure in Figure 3 shows
the discrete total energy with the lapse of time and it indicates the total energy
decreases monotonically. For comparison, the total energy by the explicit Euler
scheme is shown in the bottom figure and it increases rapidly by its instability.
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Figure 2. The numerical solutions by Scheme 2: left: solutions
from 0-th time step to 1300-th; right: from 1300-th to 2100-th;
bottom: from 3000-th to 200000-th.

These figures also suggest that the discrete dissipation property of the total energy
and the stability of the numerical solution are closely related.

This example for the Cahn–Hilliard equation indicates clearly that some spe-
cialized, structure-preserving schemes are superior to other ones. In this case, we
guess that the discrete dissipation property contributes the stability of the scheme
essentially. For some conservative problems, we also expect that some discrete con-
servative properties have some “good” side effects to obtain numerical solutions.

2. How to design numerical schemes

In this section, we introduce how to design some structure-preserving schemes
in the context of the discrete variational derivative method. We restrict ourselves
to a discussion of some typical partial differential equations and omit some cum-
bersome descriptions for want of space. For detailed definitions and discussions of
the discrete variational derivative method, please see Section 3.

2.1. First order, real-valued differntial equations. Let us consider some first
order, real-valued differential equations. The solution u(x, t) is a real function and
we assume that the free energy G(u, ux) is also a real function. The total energy

is defined by J [u]
def
=

∫ L

0
G(u, ux)dx, which is the same as before. We postpone

general discussions to the end of this subsection and treat a typical example partial
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Figure 3. The discrete total energy of the numerical solutions:
top: total energy by the dissipative Scheme 2; bottom: by the
explicit Euler Scheme 1.

differential equation:

(2.1)
∂u

∂t
= −δG

δu
, x ∈ (0, L), t > 0,

where its boudary conditions satisfy

(2.2)

[
∂G

∂ux

∂u

∂t

]L
0

= 0.

For example, the null-Dirichlet boundary conditions u(0, t) = u(L, t) = 0 satisfy
this equality. This partial differential equation (2.1) is dissipative in the following
sense:

(2.3)
d

dt
J [u] =

∫ L

0

δG

δu

∂u

∂t
dx+

[
∂G

∂ux

∂u

∂t

]L
0

= −
∫ L

0

(
δG

δu

)2

dx ≤ 0.

This dissipation property is indicated by the variational form of the equation (2.1).
We note that we may omit some boundary terms in later discussions.

We would like to design some dissipative numerical schemes for this equation. For
this purpose, the discrete variational derivative method indicates some procedures
to discretize the relationship between the dissipation property and the variational
form of the equation (2.1). Applying those procedures, we obtain some dissipative
schemes as by-products. These procedures are shown in Figure 4. The left side of
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the figure indicates the relationship among the free energy, the variational deriva-
tive, the partial differential equation, and the dissipation property. We can follow
their dependency relations by

step 1: Definition of the free energy G,
step 2: Variational derivative δG/δu of the free energy for u,
step 3: Definition of the partial differential equation includes the variational

derivative,
proposition: Dissipation property of the total energy.

The discrete variational derivative method is essentially to discretize this depen-
dency relation into discrete context. So it is a structure-preserving method literally.
The right side of the figure shows the dependency relation in discrete context to be
inherited, which can be described by

step 1d: Definition of the discrete free energy as an approximation of the orig-
inal one,

step 2d: Discrete variational derivative function,
step 3d: Definition of the numerical scheme includes the discrete variational

derivative,
proposition: Dissipative property of the discrete total energy.

We note that we cannot expect to obtain any numerical scheme that has such
dependency relations when we discretize the partial differential equation directly
without considering this structure.

Now, let us follow the procedures proposed by the discrete variational derivative
method to design some numerical schemes for the partial differential equations (2.1).
To see the process in detail, we treat a linear diffusion equation:

(2.4)
∂u

∂t
=

∂2u

∂x2

as a most simple target problem in this case. Taking G(u, ux) = (ux)
2/2, this

diffusion equation is the abstract from equation (2.1). We note that its boundary

conditions must satisfy [uxut]
L
0 = 0.

[step 1d] Definition of the discrete free energy as an approximation of the
original one

We substitute Uk
(m) for u into G(u, ux) and some appropriate difference approxi-

mations for ux, and obtain discrete free energy Gd(U
(m)). The discrete free energy

Gd is an (N + 1) dimensional vector-valued function of U (m) and we denote its
element by Gd,k for k = 0, . . . , N . We can, of course, use some different difference
approximations for ux, for example, we have

(2.5) (δ
〈1〉
k Uk

(m))2, (δ+k Uk
(m))2, (δ−k Uk

(m))2,
(δ+k Uk

(m))2 + (δ−k Uk
(m))2

2
,

as discrete approximations of ux
2. Every discrete approximation can be used in this

step, and the acquired scheme should be dissipative. We note that the acquired
scheme depends on the approximations in this step, and please see Remark 2.1.
Now we adopt a symmetric approximation

(2.6) (ux)
2 � (δ+k Uk

(m))2 + (δ−k Uk
(m))2

2
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Continuous system Discrete system

free energy

G(u, ux)

dissipation property

d

dt
J [u] ≤ 0

��������
approximation discrete free energy

Gd(U
(m))

dissipation property

Jd[U
(m+1)] ≤ Jd[U

(m)]

�

variation

��������

discrete
variation

variational derivative

δG

δu

discrete variational derivative

δGd
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�
definition
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partial differential equation

∂u

∂t
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δu

�
approximation
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(m+1) − Uk
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Δt
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result
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Figure 4. Dependency relation to dissipation property and flows
to design numerical schemes

for the problem (2.4) and obtain a discrete free energy

(2.7) Gd,k(U
(m)) =

1

2

(
(δ+k Uk

(m))2 + (δ−k Uk
(m))2

2

)
.

The total energy is defined by Jd[U
(m)] =

∑N
k=0

′′Gd,k(U
(m))Δx using the discrete

free energy.

[step 2d] Discrete variational derivative function

Here we would like to obtain the discrete variational derivative of the discrete free
energy. Some general definitions of the discrete variational derivative are indicated
in the next section, and here we derive the derivative through discrete variational
calculations to lead the reader to understand. Let us remember that the variation
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of an integral functional (1.10) is described by∫ L

0

{G(u+ δu, ux + δux)−G(u, ux)}dx(2.8)

=

∫ L

0

δG

δu
δu dx+

[
∂G

∂ux
δu

]L
0

+O(δu2).

As a similar relation in discrete context, discrete variational derivative method
requires the following relation:

N∑
k=0

′′
(
Gd,k(U

(m+1))−Gd,k(U
(m))

)
Δx(2.9)

=
N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

)
Δx+ (boundary term)

to be satisfied by the discrete variational derivative of Gd. For the problem (2.4),
we can derive the relation (2.9) easily:

N∑
k=0

′′
(
Gd,k(U

(m+1))−Gd,k(U
(m))

)
Δx(2.10)

=
1

2

N∑
k=0

′′

(
(δ+k Uk

(m+1))2 − (δ+k Uk
(m))2

2
+

(δ−k Uk
(m+1))2 − (δ−k Uk

(m))2

2

)
Δx

=
1

2

N∑
k=0

′′

{
δ+k

(
Uk

(m+1) + Uk
(m)

2

)
· δ+k (Uk

(m+1) − Uk
(m))

+δ−k

(
Uk

(m+1) + Uk
(m)

2

)
· δ−k (Uk

(m+1) − Uk
(m))

}
Δx

= −
N∑

k=0

′′δ
〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
· (Uk

(m+1)−Uk
(m))Δx+B(U (m+1),U (m)),

where

B(U (m+1),U (m))
def
=

1

2

[
δ+k

(
Uk

(m+1) + Uk
(m)

2

)
μ+
k (Uk

(m+1) − Uk
(m))

+ δ−k

(
Uk

(m+1) + Uk
(m)

2

)
μ−
k (Uk

(m+1) − Uk
(m))

]N
0

,

μ+
k fk

def
= (fk+1 + fk)/2, and μ−

k fk
def
= (fk + fk−1)/2 . In (2.10), we use a symmetric

equality δ+k δ
−
k = δ−k δ

+
k = δ

〈2〉
k and a summation by parts

(2.11)

N∑
k=0

′′(δ+k fk)gkΔx = −
N∑

k=0

′′fk(δ
−
k gk)Δx+

1

2

[
(s+k fk)gk + fk(s

−
k gk)

]N
0
,

which corresponds to a discretized integration by parts, where s+k , s−k are shift

operators that are defined by s+k fk = fk+1 and s−k fk = fk−1. We describe some
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general formulas about the summation by parts later. We note that the bound-

ary term B(U (m+1),U (m)) corresponds to the left-hand side of (2.2) and the dis-
crete variational derivative method requires discrete boundary conditions to vanish

B(U (m+1),U (m)) for m = 0, 1, 2, · · · in (2.10).
Now, (2.10) indicates that we can define the discrete variational derivative of Gd

by

(2.12)
δGd

δ(U (m+1),U (m))k
= −δ

〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
naturally, which corresponds to a discretization of the original variational derivative
δG/δu = −uxx.

[step 3d] Definition of the numerical scheme includes the discrete variational
derivative

The discrete variational derivative method proposes the following numerical
structure-preserving schemes that have abstract formulas using the discrete varia-
tional derivative of Gd.

Scheme 3 (Dissipative schemes for (2.1)). We assume that given discrete boundary

conditions approximate the original boundary conditions and satisfy B(U (m+1),U (m))

= 0 for m = 0, 1, 2, · · · . For a given initial state U (0), the discrete variational de-
rivative method proposes the following scheme:

(2.13)
Uk

(m+1) − Uk
(m)

Δt
= − δGd

δ(U (m+1),U (m))k
, k = 0, . . . , N,

to obtain numerical solution U (m) (m = 1, 2, . . .) for the problem (2.1).

This scheme has a desired dissipation property. The proof for the dissipation
property is independent of the concrete form of the free energy Gd and the discrete
variational derivative of it in a similar manner for the continuous system (2.3).

Proposition 5 (Dissipation property of Scheme 3). Scheme 3 is dissipative in the
sense that the total energy decreases, which means:

(2.14) Jd[U
(m+1)] ≤ Jd[U

(m)], m = 0, 1, 2 . . . .

Proof. From (2.9), we obtain the following equations:

Jd[U
(m+1)]− Jd[U

(m)](2.15)

=
1

Δt

N∑
k=0

′′
(
Gd,k(U

(m+1))−Gd,k(U
(m))

)
Δx

=
N∑

k=0

′′ δGd

δ(U (m+1),U (m))k

(
Uk

(m+1) − Uk
(m)

Δt

)
Δx+

B(U (m+1),U (m))

Δt

= −
N∑

k=0

′′

(
δGd

δ(U (m+1),U (m))k

)2

Δx ≤ 0.

�
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Now, we obtain a concrete expression of a discrete dissipative Scheme 3 for the
diffusion equation (2.4) by

(2.16)
Uk

(m+1) − Uk
(m)

Δt
= δ

〈2〉
k

(
Uk

(m+1) + Uk
(m)

2

)
.

The free energy is (2.7), its discrete variational derivative is (2.12), and the dis-
sipation of total energy is indicated by Proposition 5. As you know, this is a
well-known scheme called the Crank–Nicolson scheme. The stability of the Crank–
Nicolson scheme is proved by some direct methods like Fourier analysis typically.
The discrete variational derivative method also provides a different method to prove
the stability. The method uses knowledge of function analysis and the dissipation
property. It suggests that the stability analysis of the discrete variational derivative
method appears applicable to more complicated, nonlinear problems.

Remark 2.1. As we note in [step 1d], the discrete energy is not unique and a
different energy definition may derive a different dissipative scheme. For example, if

we define the discrete free energy Gd using the approximation (ux)
2 � (δ

〈1〉
k Uk

(m))2

not the former approximation (2.6), then it is defined by

(2.17) Gd,k(U
(m)) =

(δ
〈1〉
k Uk

(m))2

2
and the discrete variational derivative is

(2.18)
δGd

δ(U (m+1),U (m))k
= −(δ

〈1〉
k )2

(
Uk

(m+1) + Uk
(m)

2

)
.

So, the obtained numerical scheme is

(2.19)
Uk

(m+1) − Uk
(m)

Δt
= (δ

〈1〉
k )2

(
Uk

(m+1) + Uk
(m)

2

)
.

This scheme is different from the former scheme (2.16), but also “dissipative” in the

sense that the total energy for the free energy Gd(U
(m)) (2.17) satisfies Proposition

5.
As this example indicates, we can define the discrete free energy arbitrarily in

the discrete variational derivative method. Once we define the discrete free energy,
the discrete dissipative/conservative numerical method will be derived almost auto-
matically. Some important features of the obtained schemes, e.g., stability, depend
on their concrete forms much, and it means that we should select the definition of
the discrete free energy carefully.

Here we generalize the discrete variational derivative method for some first order
differential equations from the discussion about the diffusion equation.
First order, real-valued dissipative equations. Let us consider the following
general partial differential equations:

(2.20)
∂u

∂t
= (−1)s+1

(
∂

∂x

)2s
δG

δu
, s = 0, 1, 2, · · · ,

which has some boundary conditions that satisfy

(2.21)

[
∂G

∂ux

∂u

∂t
+

s∑
l=1

(−1)s+lF 〈l−1〉F 〈2s−l〉

]L
0

= 0
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for t > 0, where the second term is zero when s = 0 and F 〈l〉 def
= (∂/∂x)l(δG/δu).

These equations are dissipative, i.e., the total energy J [u] =
∫ L

0
G(u, ux)dx de-

creases. The diffusion equation and the Allen–Cahn equation [1] are the partial
differential equations (2.20) with s = 0, and the Cahn–Hilliard equation and the
prominence temperature equation [2, pp.7–8] are ones with s = 1.

The discrete variational derivative method proposes a numerical scheme:

(2.22)
Uk

(m+1) − Uk
(m)

Δt
= (−1)s+1δ

〈2s〉
k

(
δGd

δ(U (m+1),U (m))k

)

for the problem (2.21), where δ
〈h〉
k is an h-th order central difference operator, which

is defined in Proposition 7 to be described. The discrete variational derivative
method requires the boundary conditions to satisfy

(2.23)
Br,1(U

(m+1),U (m))

Δt
+ (−1)s+1B

〈2s〉
r,2 (U (m+1),U (m)) = 0.

We note that this requirement corresponds to (2.21). Br,1(·, ·) is defined in (3.8)

and B
〈2s〉
r,2 (·, ·) is defined by

B
〈2s〉
r,2 (U (m+1),U (m))

def
=(2.24)⎡⎣−∑

1≤l≤s
l:even

2ϕ
〈l−1〉
k ϕ

〈2s−l〉
k +

(
δ+k ϕ

〈l−2〉
k

)(
s+k ϕ

〈2s−l〉
k

)
+
(
δ−k ϕ

〈l−2〉
k

)(
s−k ϕ

〈2s−l〉
k

)
4

+
∑

1≤l≤s

l:odd

2ϕ
〈l−1〉
k ϕ

〈2s−l〉
k +

(
s+k ϕ

〈l−1〉
k

)(
δ+k ϕ

〈2s−l−1〉
k

)
+
(
s−k ϕ

〈l−1〉
k

)(
δ−k ϕ

〈2s−l−1〉
k

)
4

⎤⎥⎦
N

0

where ϕ
〈l〉
k

def
= δ

〈l〉
k

(
δGd/δ(U

(m+1),U (m))k

)
. The proposed numerical scheme (2.22)

is dissipative.

Proposition 6 (Dissipation property of the general scheme (2.22)). Assuming
that discrete boundary conditions satisfy (2.23), the scheme (2.22) is dissipative in
the sense that the discrete total energy decreases:

Jd[U
(m+1)] ≤ Jd[U

(m)], m = 0, 1, 2, · · · .
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Proof. We obtain the following inequality using a discrete variational equality (3.7)
and Proposition 9 about higher summation by parts in the next section:

1

Δt

N∑
k=0

′′{Gd,k(U
(m+1))−Gd,k(U

(m))}Δx(2.25)

=

N∑
k=0

′′

[(
δGd

δ(U (m+1),U (m))k

)(
Uk

(m+1) − Uk
(m)

Δt

)]
Δx

+
Br,1(U

(m+1),U (m))

Δt

=

N∑
k=0

′′

[(
δGd

δ(U (m+1),U (m))k

)
· (−1)s+1δ

〈2s〉
k

δGd

δ(U (m+1),U (m))k

]
Δx

+
Br,1(U

(m+1),U (m))

Δt

= −
N∑

k=0

′′Ψ
(s)
k Δx+

Br,1(U
(m+1),U (m))

Δt
+ (−1)s+1B

〈2s〉
r,2 (U (m+1),U (m)) ≤ 0,

where Ψ
(s)
k

def
= (ϕ

〈s〉
k )2 (when s is even), and

{
(δ+kϕ

〈s−1〉
k )2 + (δ−kϕ

〈s−1〉
k )2

}
/2 (when

s is odd). The proposition is satisfied since the discrete boundary conditions vanish

the boundary terms and Ψ
(s)
k is nonnegative. �

Actually, the dissipative Scheme 2 for the Cahn–Hilliard equation is the gener-
alized scheme (2.22) with the discrete free energy Gd in (1.16), and its stability is
proved by Proposition 6. To confirm this comment, the definition of the discrete
variational derivative (3.6) may help the reader.
First order, real-valued conservative equations. The following partial differ-
ential equations:

(2.26)
∂u

∂t
=

(
∂

∂x

)2s+1
δG

δu
, s = 0, 1, 2 · · · ,

are conservative in the sense that the system conserves the total energy J [u] =∫ L

0
G(u, ux)dx under appropriate boundary conditions. The discussion about the

boundary conditions is about the same as that for dissipative equations, and we
omit it.

The well-known Korteweg–de Vries equation [36] and the Zakharov–Kuznetsov
equation [60] are examples of this problem. The discrete variational derivative
method proposes the following numerical scheme for this generalized conservative
equations:

(2.27)
Uk

(m+1) − Uk
(m)

Δt
= δ

〈2s+1〉
k

(
δGd

δ(U (m+1),U (m))k

)
.

We have indicated that this scheme conserves the discrete total energy Jd[U
(m)] =∑N

k=0
′′Gd,k(U

(m))Δx under appropriate discrete boundary conditions.
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Remark 2.2. We can expand these discussions considering a more generalized dif-
ferential equation:

(2.28)
∂u

∂t
= A δG

δu
,

where A is an operator. When the operator A is negative-definite for the natural
inner product derived by integration, the system is dissipative. If the operator
is skew-symmetric, then the system is conservative. So, the discrete variational
derivative method is expanded to design some numerical schemes that inherit the
negative-definite property or the skew-symmetric property of the operator A.

Remark 2.3. Expanding the formulation of the free energy, e.g., domain of defi-
nition, provides more target differential equations for the discrete variational de-
rivative method. For example, if we consider the free energy function written by
G = G(u, ux, uxx), then we can treat the Swift–Hohenberg equation [53] as a first
order, real-valued dissipative equation (2.20). When we consider G = G(u,H−1u),
where H is the Helmholtz operator, we can apply the discrete variational derivative
method to the Keller–Segel equation [34] as a dissipative problem.

2.2. First order, complex-valued differential equations. For some complex-
valued differential equations, we are able to discuss the discrete variational deriva-
tive method in a similar manner. Assuming that the solution u(x, t) is a complex-
valued function and the free energy G(u, ux) is a real-valued function, we can define
the variational derivative functions by

δG

δu

def
=

∂G

∂u
− ∂

∂x

∂G

∂ux
,

δG

δu

def
=

∂G

∂u
− ∂

∂x

∂G

∂ux
,

where u is the complex conjugate of u and obtain the following variational equality:∫ L

0

(G(u+ δu, ux + δux)−G(u, ux))dx(2.29)

=

∫ L

0

(
δG

δu
δu+

δG

δu
δu

)
dx+

[
∂G

∂ux
δu+

∂G

∂ux
δu

]L
0

+O(|δu|2).

Using these equalities, we can design some structure-preserving schemes for some
problems, for example, the following differential equation.
First order, complex-valued dissipative equation. Let us consider the fol-
lowing partial differential equation:

(2.30)
∂u

∂t
= −δG

δu
,

where its boundary conditions satisfy[
∂G

∂ux

∂u

∂t
+

∂G

∂ux

∂u

∂t

]L
0

= 0

for t > 0. It is not difficult to confirm that this equation is dissipative, i.e., the

total energy J [u] =
∫ L

0
G(u, ux)dx descreases, by

d

dt
J [u] = −2

∫ L

0

∣∣∣∣δGδu
∣∣∣∣2 dx+

[
∂G

∂ux

∂u

∂t
+

∂G

∂ux

∂u

∂t

]L
0

≤ 0.

A variant of the Ginzburg–Landau equation [38], which is a model equation for the
super-conductivity phenomenon, and the Newell–Whitehead equation [47], which
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is a model for the Bénard flow, are examples that we can treat as the complex-
valued dissipative equation and compute some numerical solutions by the discrete
variational derivative method [20]. We omit any detailed discussion of them.
First order, complex-valued conservative equation. The following partial
differential equation:

(2.31) i
∂u

∂t
= −δG

δu

is conservative with some appropriate boundary conditions. The requirement for
the boundary conditions is the same as that in the former case. The conservation
property is indicated by

d

dt
J [u] =

∫ L

0

(
i

∣∣∣∣δGδu
∣∣∣∣2 − i

∣∣∣∣δGδu
∣∣∣∣2
)
dx+

[
∂G

∂ux

∂u

∂t
+

∂G

∂ux

∂u

∂t

]L
0

= 0.

We can apply this context to the well-known nonlinear Schrödinger equation [5, 51]
and the Gross–Pitaevskii equation [26, 48], which is a model of the Bose–Einstein
condensation, and obtain their numerical solutions by the discrete variational de-
rivative method.

2.3. Other partial differential equations. There exist lots of partial differential
equations that are different from the equations described so far, and we can apply
the discrete variational derivative method. For example, some systems of differential
equations are dissipative or conservative, and the discrete variational derivative
method derives some structure-preserving schemes for them. We omit the general
discussion, which is described in Section 2.4 in Furihata and Matsuo [20], and give
examples. The “good” Boussinesq equation [40]:

(2.32)
∂

∂t

(
u
v

)
=

(
0 ∂x
∂x 0

)(
δG/δu
δG/δv

)
,

where G(u, ux, v, vx) = u2/2 + u3/3 + (ux)
2/2+ v2/2, is a typical conservative sys-

tem of equations that we can design using the discrete variational derivative method
scheme. As other examples of the conservative systems, we can cite the Zakharov
equation [21, 59], standard Hamilton systems, the Boussinesq–Schrödinger equa-
tion [4], the coupled Klein–Gordon–Schrödinger equation [3], and the long-short
wave interaction equation [58]. The Eguchi–Oki–Matsumura equation [13] and a
variant of the Ginzburg–Landau equation [11] are examples of the dissipative sys-
tems that we can apply the discrete variational derivative method.
Second order partial differential equations. The following second order par-
tial differential equation:

(2.33)
∂2u

∂t2
= −δG

δu

is also conservative and one of the target equations for the discrete variational deriv-

ative method. We require that the boundary conditions satisfy [(∂G/∂ux) (∂u/∂t)]
L
0

= 0. We should note that the definition of the total energy of this problem is

(2.34) J [u]
def
=

∫ L

0

{
(ut)

2/2 +G(u, ux)
}
dx,
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and different from that for other problems. The conservation property is indicated
by

d

dt
J [u] =

∫ L

0

(
utt +

δG

δu

)
ut dx+

[
∂G

∂ux

∂u

∂t

]L
0

= 0.

This second order abstract equation also includes lots of concrete target problems,
for example, the Fermi–Pasta–Ulam equation [15], the nonlinear string vibration
equation [9], the nonlinear Klein–Gordon equation [16, 17, 24, 35], the Shimoji–
Kawai equation [50], and the Ebihara equation [12]. The discrete variational de-
rivative method proposes two approaches for this equation. The first approach is
to introduce a new dependent variable, decrease the differentiation order to first
order, and treat a system of first order differential equations equivalent to the orig-
inal second order equation. Another one is to define the discrete free energy Gd by

Gd = Gd(U
(m+1),U (m)), and define the discrete total energy by

Jd[U
(m+1),U (m)]

def
=

N∑
k=0

′′

⎧⎨⎩1

2

(
Uk

(m+1) − Uk
(m)

Δt

)2

+Gd,k(U
(m+1),U (m))

⎫⎬⎭Δx,

and apply the discrete variational derivative method using these definitions.

3. Detailed definitions and discussion

In this section, we describe the summation by parts, discrete variational deriv-
ative and some detailed notation, which is required to understand the process of
the discrete variational derivative method in detail. By the mathematical definition
of the discrete variational derivative, we can avoid some vagueness of computation
of them. We restrict our discussion to real-valued equations to avoid cumbersome
descriptions in this section. We describe more detailed discussions and treatments
of complex-valued equations in Furihata and Matsuo [20]and ask the reader to refer
it.

3.1. Summation by parts. For general discussion using some difference opera-
tors, there exists a significant mathematical obstacle. The definitions of even order
difference operators are different from that of odd order operators. To dissolve this
obstacle, we indicate the following proposition.

Proposition 7 (General expression of the central difference operators). We can

denote the h-th order central difference operators δ
〈h〉
k by an expression:

(3.1) δ
〈h〉
k = eTDh

k e, h = 0, 1, 2, · · · ,
where

Dk
def
=

(
0 δ+k
δ−k 0

)
, e

def
=

1√
2

(
1
1

)
,

and D0
k

def
= I.

Proof. Using that δ
〈h〉
k = (δ

〈2〉
k )h/2 for even h and δ

〈h〉
k = (δ

〈2〉
k )(h−1)/2 δ

〈1〉
k for odd

h, the proposition is proved immediately. �

Based on this proposition, we can derive some concrete expressions of summation
by parts from the following general summation by parts.
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Proposition 8 (General expression of summation by parts). In general, the fol-
lowing equality is satisfied:

(3.2)
N∑

k=0

′′

{
akDka

′
k + (Dka

T
k)

Ta′k

}
Δx =

1

2

[
akAka

′
k + (Aka

T
k)

Ta′k

]N
k=0

,

where

ak
def
=

(
ζk ηk
θk ξk

)
, a′k

def
=

(
ζ ′k η′k
θ′k ξ′k

)
, Ak

def
=

(
0 s+k
s−k 0

)
,

and {ζk}, {ηk}, {θk}, {ξk}, {ζ ′k}, {η′k}, {θ′k}, {ξ′k} are arbitrary scalar sequences.

Proof. We can confirm this equality of each element using the most simple summa-
tion by parts (2.11). �

This general expression derives the following high order summation by parts,
which is required for the general discrete variational derivative method.

Proposition 9 (High order summation by parts). Assume s ∈ {1, 2, 3, · · · }. For
even s, the following summaton by parts is satisfied:

N∑
k=0

′′fkδ
〈s〉
k fkΔx = (−1)s/2

N∑
k=0

′′F
(s,s/2)
k Δx

+

⎡⎢⎣− ∑
1≤l≤s/2
l:even

2f
〈l−1〉
k f

〈s−l〉
k +

(
δ+k f

〈l−2〉
k

)(
s+k f

〈s−l〉
k

)
+
(
δ−k f

〈l−2〉
k

)(
s−k f

〈s−l〉
k

)
4

+
∑

1≤l≤s/2

l:odd

2f
〈l−1〉
k f

〈s−l〉
k +

(
s+k f

〈l−1〉
k

)(
δ+k f

〈s−l−1〉
k

)
+
(
s−k f

〈l−1〉
k

)(
δ−k f

〈s−l−1〉
k

)
4

⎤⎥⎦
N

0

,

where f
〈l〉
k

def
= δ

〈l〉
k fk, and

(3.3) F
(l,l′)
k

def
=

⎧⎪⎨⎪⎩
f
〈l′〉
k s

〈l mod 2〉
k f

〈l′〉
k : when l′ is even,

1

2

{(
δ+k f

〈l′−1〉
k

)2
+
(
δ−k f

〈l′−1〉
k

)2}
: when l′ is odd,

for l, l′ ∈ {0, 1, 2, . . .}. For odd s, the follwing equation is satisfied:

N∑
k=0

′′fkδ
〈s〉
k fkΔx =⎡⎢⎣− ∑

1≤l≤(s−1)/2
l:even

(
δ+k f

〈l−2〉
k

)(
δ+k f

〈s−l−1〉
k

)
+
(
δ−k f

〈l−2〉
k

)(
δ−k f

〈s−l−1〉
k

)
2

+
∑

1≤l≤(s−1)/2

l:odd

f
〈l−1〉
k

(
s
〈1〉
k f

〈s−l〉
k

)
+
(
s
〈1〉
k f

〈l−1〉
k

)
f
〈s−l〉
k

2
+

1

2
(−1)(s−1)/2F

(s,(s−1)/2)
k

⎤⎥⎦
N

0

.
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Proof. Proposition 8 indicates

N∑
k=0

′′
{

akD
h
ka

′
k

}
Δx = (−1)h

′
N∑

k=0

′′
(
Dh′

k aTk

)T (
Dh−h′

k a′k

)
Δx

+
1

2

⎡⎣ h′∑
l=1

(−1)l−1

{(
Dl−1

k aTk
)T(

AkD
h−l
k a′k

)
+
(
AkD

l−1
k aTk

)T(
Dh−l

k a′k
)}⎤⎦N

k=0

for 0 ≤ h′ ≤ h. Operating the e to both sides of this expression, we obtain a scalar
equation that corresponds to the proposition. �
3.2. Discrete variational derivative. Here, we indicate the mathematical defi-
nition of the discrete variational derivative. For simplicity, we assume that the free
energy is a real-valued function G = G(u, ux) that depends only on a real-valued
function u and the derivative ux and we can describe it by

(3.4) G(u, ux) =

˜M∑
l=1

f̃l(u)g̃l(ux), M̃ ∈ N,

where {f̃l, g̃l}˜M
l=1 are real-valued differentiable functions. We also assume that we

define the discrete energy function by

(3.5) Gd,k(U) =

M∑
l=1

fl(Uk)g
+
l (δ

+
k Uk)g

−
l (δ

−
k Uk), k = 0, · · · , N,

where {fl, g±l }Ml=1 are differentiable functions. The discrete free energy Gd, of
course, should approximate the original free energy G. Under these assumptions,
the discrete variational derivative method provides the definition of the discrete
variational derivative of Gd.

Definition of discrete variational derivative. The definition of the discrete
variational derivative of the discrete free energy Gd (3.5) for U ,V ∈ RN+1 is

(3.6)
δGd

δ(U ,V )k

def
=

∂Gd

∂(U ,V )k
− δ−k

(
∂Gd

∂δ+(U ,V )k

)
− δ+k

(
∂Gd

∂δ−(U ,V )k

)
for k = 0, · · · , N , where

∂Gd

∂(U ,V )k

def
=

M∑
l=1

(
fl(Uk)− fl(Vk)

Uk − Vk

)(
g+l (δ

+
k Uk)g

−
l (δ−k Uk) + g+l (δ

+
k Vk)g

−
l (δ

−
k Vk)

2

)
,

∂Gd

∂δ−(U ,V )k

def
=

M∑
l=1

(
fl(Uk) + fl(Vk)

2

)(
g+l (δ

+
k Uk) + g+l (δ

+
k Vk)

2

)(
g−l (δ

−
k Uk)− g−l (δ

−
k Vk)

δ−k (Uk − Vk)

)
,

∂Gd

∂δ+(U ,V )k

def
=

M∑
l=1

(
fl(Uk) + fl(Vk)

2

)(
g−l (δ

−
k Uk) + g−l (δ−k Vk)

2

)(
g+l (δ

+
k Uk)− g+l (δ

+
k Vk)

δ+k (Uk − Vk)

)
.

This definition should satisfy the relation (2.9).



DISCRETE VARIATIONAL DERIVATIVE METHOD 251

Proposition 10 (Discrete variation). For any U ,V ∈ RN+1, the discrete free en-
ergy (3.5) and the discrete variational derivative (3.6) satisfy the following equality:

N∑
k=0

′′ {Gd,k(U)−Gd,k(V )}Δx(3.7)

=
N∑

k=0

′′
[(

δGd

δ(U ,V )k

)
(Uk − Vk)

]
Δx+Br,1(U ,V ),

where

Br,1(U ,V )(3.8)

def
=

1

2

[
∂Gd

∂δ+(U ,V )k
(s+k (Uk − Vk)) +

{
s−k

(
∂Gd

∂δ+(U ,V )k

)}
(Uk − Vk)

+
∂Gd

∂δ−(U ,V )k
(s−k (Uk − Vk)) +

{
s+k

(
∂Gd

∂δ−(U ,V )k

)}
(Uk − Vk)

]N
0

.

4. Advanced topics and summary

For the reader, we mention some advanced topics of the discrete variational
derivative method and describe a summary.

4.1. Advanced topics. From Furihata and Matsuo [20], we extract some advanced
topics of the discrete variational derivative method.
Schemes with high accuracy. In general, a numerical scheme using the standard
central difference operators is second order in the sense of accuracy. There exist
some approaches to design some numerical schemes with higher accuracy. One is
to use higher accurate operators simply. This idea works well for the accuracy for
the space discretization, but it is hard to design numerical schemes to be accurate
for the time discretization. Moreover, the obtained scheme with high accuracy for
the time discretization may cost significantly. Another approach is the composition
method [52, 57]. This approach works well, and its implementation is not difficult,
but the composition method requires some “reverse-time computation process” and
every discrete dissipation property is ruined theoretically by this process.
Schemes with low computation cost. Applying the standard discrete varia-
tional derivative method to nonlinear partial differential equations, we obtain non-
linear schemes in general. The order of nonlinearity of the scheme is the same as of
the original equation, e.g., the numerical scheme should be a cubic polynomial of

U (m+1) for a differential equation that is a cubic polynomial of u(x, t). This means

that the computation cost to obtain U (m+1) may be significant for highly nonlinear
problems. We have developed a method to decrease the order of nonlinearity of
the scheme introducing extra time steps. The introduction of extra time steps may
unstabilize the schemes in general, so this method demands lots of care to apply.
Galerkin approach. We describe the finite difference schemes of the discrete
variational derivative method in this manuscript. We can, of course, apply the
approach to problems based on the methods used in the finite element Galerkin
method. The Galerkin approach is quite flexible about the space discretization
and easy to handle for the problems with high space dimensions. However, taking
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some function spaces that conforms to each other may be difficult when the order
of differentiation is high.
Mesh configuration. The discrete variational derivative method requires some
discrete mathematical relations, e.g., the summation by parts and the discrete
Green’s theorem, between differential operations and integration. However, those
relations depend on the mesh shapes in general. This dependency has been a
fatal obstacle to the discrete variational derivative method on some flexible mesh
shapes. Recently, some approaches, e.g., the Galerkin approach and generalized
discrete Green’s theorem, relaxes this difficulty.

4.2. Summary. We describe the basic ideas, features, and definitions of the dis-
crete variational derivative method which is a structure-preserving method for some
dissipative or conservative partial differential equations. The essence of the method
is the discretization of the dependency relation among the free energy, the varia-
tional derivative, the partial differential equation, and the dissipation property. The
idea is simple to understand and also applicable to lots of concrete problems. Some
notation in the finite difference context may be cumbersome, but it may not bother
the reader since the concrete expressions are easier to treat. We, the authors, hope
that this manuscript will help the reader with the numerical computations or the
structure-preserving methods.

Appendix: History. Here we will briefly introduce the studies related to the
structure-preserving methods. The early attempts to inherit some features from
the equations are studies about ordinary differential equations. For example, in the
1970s Greenspan [25] show a discrete conservative scheme for a conservative dynam-
ical system. Gonzalez [22] and McLachlan–Quispel–Robidoux [45] later expanded
it to the general dynamical systems. The symplectic method for the Hamilton
system is a quite well known structure-preserving method for ordinary differential
equations and considerably superior to the numerical methods. Hairer–Lubich–
Wanner [28], Sanz-Serna and Calvo [49], and Leimkuhler–Reich [37] will help the
reader to understand the symplectic method. The works in Faou–Hairer–Pham [14]
and Hairer [27] show some other relaxed conservative methods. We can read the
excellent and comprehensive reviews on the development of the numerical meth-
ods, sometimes called “geometric integration for ordinary differential equations”,
in Hairer–Lubich–Wanner [28] and Budd–Piggott [7].

For partial differential equations, we can find some early studies from the 1970s.
We refer the reader to section 1.2 in Furihata and Matsuo [20] for some general ap-
proaches, which include the discrete variational derivative methoddeveloped in the
1990s. Furihata–Mori [18, 19] proposed the discrete variational derivative method
in 1996 and 1999, and many authors [31, 43, 44, 55, 56] have developed the method.
Furihata and Matsuo [20] is a reference to describe the development. Around the
same time, Gonzalez [23] proposed a conservative method for some general prob-
lems describing deformation elastodynamics, which is based on a special technique
in time discretization [22]. Other excellent works to design conservative schemes,
e.g., in Mclachlan–Robidoux [46], are also based on their studies on ordinary differ-
ential equations [45]. Jiménez [32] also studies a systematic approach to designing
some discrete conservation schemes. Concerning the relaxed conservation or dis-
sipation properties, there exist some interesting approaches and Budd–Piggot [7]



DISCRETE VARIATIONAL DERIVATIVE METHOD 253

is an appropriate review. For Hamiltonian partial differential equations, Marsden–
Patrick–Shkoller [41] proposed the “variational integrator” based on the variational
principal. Its name is close to the discrete variational derivative method, but their
methods are quite different. Marsden–West [42] is a good review of them. Bridges–
Reich [6] developed another interesting method, “the multi-symplectic method”,
for Hamiltonian partial differential equations. They transformed the original equa-
tions to the multi-symplectic form and designed some numerical schemes based on
the form. Please refer to [10, 29, 30] for the method. Finally, we introduce other
excellent reviews including Leimkuhler–Reich [37] and Lubich [39] for the reader
who is interested in the structure-preserving methods.
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16. Fock, V.A., Zur Schrödingerschen Wellenmechanik, Z. Phys. A, 38 (1926), 242–250.
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