Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Ergodicity and stability of nonstationary queueing systems


Authors: D. B. Andreev, M. A. Elesin, E. A. Krylov, A. V. Kuznetsov and A. I. Zeifman
Translated by: The authors
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 68 (2003).
Journal: Theor. Probability and Math. Statist. 68 (2004), 1-10
MSC (2000): Primary 60J27, 60J80
DOI: https://doi.org/10.1090/S0094-9000-04-00594-0
Published electronically: May 11, 2004
MathSciNet review: 2000389
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study stability and ergodicity of a special class of nonhomogeneous birth-death processes and consider applications of estimates for queue-length process for $M_t/M_t/S$ and $M_t/M_t/S/S$ queues.


References [Enhancements On Off] (What's this?)

  • 1. D. B. Andreev, M. A. Elesin, E. A. Krylov, A. V. Kuznetsov, and A. I. Zeifman, On ergodicity and stability estimates for some nonhomogeneous Markov chains, J. Math. Sci. 112 (2002), 4111-4118. MR 2003m:60204
  • 2. J. R. Artalejo and M. J. Lopez-Herrero, Analysis of the busy period for the $M/M/c$ queue: an algorithmic approach, J. Appl. Prob. 38 (2001), 209-222. MR 2001k:60130
  • 3. J.-D. Deuschel and C. Mazza, $L^2$ convergence of time nonhomogeneous Markov processes: I. Spectral estimates, Ann. Appl. Prob. 4 (1994), no. 4, 1012-1056. MR 96b:60188
  • 4. A. Di Crescenzo and A. G. Nobile, Diffusion approximation to a queueing system with time dependent arrival and service rates, QUESTA 19 (1995), 41-62. MR 96b:60238
  • 5. Yu. L. Daletski{\u{\i}}\kern.15em and M. G. Krein, Stability of Solutions of Differential Equations in Banach Spaces, ``Nauka'', Moscow, 1970; English transl., Amer. Math. Soc., Providence, RI, 1974. MR 50:5125; MR 50:5126
  • 6. van E. Doorn, Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process, Adv. Appl. Prob. 17 (1985), 504-530. MR 86m:60183
  • 7. C. Fricker, P. Robert, and D. Tibi, On the rate of convergence of Erlang's model, J. Appl. Prob. 36 (1999), 1167-1184. MR 2000k:60186
  • 8. B. V. Gnedenko and I. P. Makarov, Properties of solutions of a problem with losses in the case of periodic intensities, Differentsial'nye Uravneniya 7 (1971), 1696-1698. (Russian) MR 45:2254
  • 9. B. V. Gnedenko and A. D. Solov'ev, On conditions of the existence of final probabilities for a Markov process, Math. Operationsforsch. Statist. 4 (1973), 379-390. (Russian) MR 52:15680
  • 10. B. V. Gnedenko, On a generalization of Erlang's formulae, Zastos. Mat. 12 (1971), 239-242. (Russian) MR 47:4351
  • 11. V. Giorno and A. Nobile, On some time-nonhomogeneous diffusion approximations to queueing systems, Adv. Appl. Prob. 19 (1987), 974-994. MR 89a:60218
  • 12. B. L. Granovsky and A. I. Zeifman, Nonstationary Markovian queues, J. Math. Sci. 99 (2000), no. 4, 1415-1438. MR 2001g:60206
  • 13. L. Green, P. Kolesar, and A. Svornos, Some effects of nonstationarity on multiserver Markovian queueing systems, Oper. Res. 39 (1991), 502-511.
  • 14. D. P. Heyman and W. Whitt, The asymptotic behaviour of queues with time-varying arrival rates, J. Appl. Prob. 21 (1984), 143-156. MR 85c:60158
  • 15. V. V. Kalashnikov, Qualitative analysis of complex systems behavior by the test functions method, ``Nauka'', Moscow, 1978. (Russian) MR 82b:90041
  • 16. N. V. Kartashov, Strong stable Markov chains, Problems of the Stability for Stochastic Models, VNIISI, Moscow, 1981, pp. 54-59; English transl., J. Soviet Math. 34 (1986), 1493-1498. MR 84b:60089
  • 17. J. B. Keller, Time-dependent queues, SIAM Rev. 24 (1982), 401-412. MR 85c:60160
  • 18. M. Kijima, On the largest negative eigenvalue of the infinitesimal generator associated with $M/M/n/n$ queues, Oper. Res. Let. 9 (1990), 59-64. MR 91f:60171
  • 19. A. Mandelbaum and W. Massey, Strong approximations for time-dependent queues, Math. Oper. Res. 20 (1995), 33-64. MR 96b:60240
  • 20. W. A. Massey and W. Whitt, On analysis of the modified offered-load approximation for the nonstationary Erlang loss model, Ann. Appl. Prob. 4 (1994), 1145-1160. MR 95m:60147
  • 21. M. H. Rothkopf and S. S. Oren, A closure approximation for the nonstationary $M/M/s$ queue, Management Sci. 25 (1979), 522-534. MR 81c:60101
  • 22. W. Stadie and P. R. Parthasarathy, On the convergence to stationarity of the many-server Poisson queue, J. Appl. Prob. 36 (1999), 546-557. MR 2000i:60109
  • 23. W. Stadie and P. R. Parthasarathy, Generating function analysis of some joint distributions for Poisson loss systems, QUESTA 34 (2000), 183-197. MR 2001g:60238
  • 24. M. Voit, A note of the rate of convergence to equilibrium for Erlang's model in the subcritical case, J. Appl. Prob. 37 (2000), 918-923. MR 2001e:60183
  • 25. A. I. Zeifman, Stability for continuous-time nonhomogeneous Markov chains, Lect. Notes Math. 1155 (1985), 401-414. MR 87h:60136
  • 26. A. I. Zeifman, Qualitative properties of nonhomogeneous birth-death processes, Problems of the Stability for Stochastic Models, VNIISI, Moscow, 1988, pp. 32-40; English transl., J. Soviet Math. 57 (1991), 3217-3224. MR 92b:60084
  • 27. A. I. Zeifman, Properties of a loss system in the case of variable rate, Avtomat. i Telemekh. 1 (1989), 107-113; English transl., Automat. Remote Control 50 (1989), 82-87. MR 90g:60088
  • 28. A. I. Zeifman, Some estimates of the rate of convergence for birth and death processes, J. Appl. Prob. 28 (1991), 268-277. MR 92f:60147
  • 29. A. I. Zeifman, Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes, Stoch. Proc. Appl. 59 (1995), 157-173. MR 96g:60109
  • 30. A. I. Zeifman and D. Isaacson, On strong ergodicity for nonhomogeneous continuous-time Markov chains, Stoch. Proc. Appl. 50 (1994), 263-273. MR 95c:60068

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60J27, 60J80

Retrieve articles in all journals with MSC (2000): 60J27, 60J80


Additional Information

D. B. Andreev
Affiliation: Vologda State Pedagogical University, Vologda, Russia

M. A. Elesin
Affiliation: Vologda State Pedagogical University, Vologda, Russia

E. A. Krylov
Affiliation: Vologda State Pedagogical University, Vologda, Russia

A. V. Kuznetsov
Affiliation: Vologda State Pedagogical University, Vologda, Russia

A. I. Zeifman
Affiliation: Vologda State Pedagogical University, Vologda, Russia
Address at time of publication: Vologda Scientific Coordinate Centre of Central Economics and Mathematics Institute, Russian Academy of Sciences, Vologda, Russia
Email: zai@uni-vologda.ac.ru

DOI: https://doi.org/10.1090/S0094-9000-04-00594-0
Received by editor(s): April 4, 2002
Published electronically: May 11, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society