Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 

 

Bounded and periodic solutions of linear and weakly nonlinear stochastic Itô systems


Author: O. M. Stanzhits'kii
Translated by: V. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 68 (2003).
Journal: Theor. Probability and Math. Statist. 68 (2004), 147-155
MSC (2000): Primary 34C25, 34C29, 34F05
DOI: https://doi.org/10.1090/S0094-9000-04-00602-7
Published electronically: June 10, 2004
MathSciNet review: 2000644
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Conditions for the existence of solutions that are mean square bounded and periodic in $\mathbf R$ are obtained for linear and weakly nonlinear stochastic Itô systems by using the Green function of the linear part of the systems.


References [Enhancements On Off] (What's this?)

  • 1. L. Ruifeld and V. Mandekar, Stochastic semilinear evolution equations: Lyapunov function, stability, and ultimate boundedness, J. Math. Anal. Appl. 12 (1998), no. 2, 98-115.
  • 2. A. Ya. Dorogovtsev, \cyr Periodicheskie i statsionarnye rezhimy beskonechnomernykh determinirovannykh i stokhasticheskikh dinamicheskikh sistem, “Vishcha Shkola”, Kiev, 1992 (Russian, with Russian and Ukrainian summaries). MR 1206004
  • 3. E. F. Tsar′kov, \cyr Sluchaĭnye vozmushcheniya differentsial′no-funktsional′nykh uravneniĭ, “Zinatne”, Riga, 1989 (Russian). MR 1036733
  • 4. R. Sh. Liptser and A. N. Shiryayev, Theory of martingales, Mathematics and its Applications (Soviet Series), vol. 49, Kluwer Academic Publishers Group, Dordrecht, 1989. Translated from the Russian by K. Dzjaparidze [Kacha Dzhaparidze]. MR 1022664
  • 5. B. P. Demidovič, \cyr Lektsii po matematicheskoĭ teorii ustoĭchivosti, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0226126
  • 6. R. Z. Has′minskiĭ, \cyr Ustoĭchivost′ sistem differentsial′nykh uravneniĭ pri sluchaĭnykh vozmushcheniyakh ikh parametrov, Izdat. “Nauka”, Moscow, 1969 (Russian). MR 0259283

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 34C25, 34C29, 34F05

Retrieve articles in all journals with MSC (2000): 34C25, 34C29, 34F05


Additional Information

O. M. Stanzhits'kii
Affiliation: Faculty for Mechanics and Mathematics, Kyiv National Taras Shevchenko University, Volodymyrs’ka Street 64, Kyiv 01033, Ukraine
Email: stom@mail.univ.kiev.ua

DOI: https://doi.org/10.1090/S0094-9000-04-00602-7
Received by editor(s): May 1, 2001
Published electronically: June 10, 2004
Article copyright: © Copyright 2004 American Mathematical Society