Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)



An essay on Gnedenko's theorem

Author: A. Yu. Veretennikov
Translated by: The author
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 69 (2003).
Journal: Theor. Probability and Math. Statist. 69 (2004), 17-25
MSC (2000): Primary 60J10, 60F05
Published electronically: February 7, 2005
MathSciNet review: 2110901
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A local central limit theorem is established for a Markov chain on a lattice under recurrence type assumptions and a simple additional assumption on conditional distributions of the process. The main result extends, in particular, the classical theorem by B. V. Gnedenko for the case of independent identically distributed random variables (1948). Sufficient conditions for recurrence assumptions are provided.

References [Enhancements On Off] (What's this?)

  • 1. P. W. Glynn and S. P. Meyn, A Lyapounov bound for solutions of the Poisson equation, Ann. Probab. 24 (1996), no. 2, 916-931. MR 1404536 (98b:60123)
  • 2. B. V. Gnedenko, On a local limit theorem of the theory of probability, Uspekhi Matem. Nauk (N.S.) 3 (1948), no. 3(25), 187-194. MR 0026275 (10:132c)
  • 3. -, Theory of Probability, 6th ed., Moscow, ``Nauka'', 1988; English transl. of the 4th ed., Chelsea Publishing Co., New York, 1967. MR 0217824 (36:913)
  • 4. B. V. Gnedenko, Yu. K. Belyayev, and A. D. Solovyev, Mathematical Methods of Reliability Theory, ``Nauka'', Moscow, 1965; English transl., Academic Press, New York, 1969. MR 0187987 (32:5432); MR 0345234 (49:9973)
  • 5. B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory, ``Nauka'', Moscow, 1987; English transl., Birkhäuser, Boston, 1991. MR 0912691 (88k:60167)
  • 6. R. Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, and Rockville, Maryland, 1980. 0600653 (82b:60064)
  • 7. I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables Wolters-Noordhoff, Groningen, 1971. MR 0322926 (48:1287)
  • 8. A. N. Kolmogorov, Local limit theorem for classical Markov chains, Izv. AN SSSR Ser. Mat. 13 (1949), 281-300; reprinted in Probability Theory and Mathematical Statistics, ``Nauka'', Moscow, 1986, pp. 313-335. MR 0031216 (11:119c) (Russian)
  • 9. J. Lamperti, Criteria for stochastic processes II: passage-time moments, J. Math. Anal. Appl. 7 (1963), 127-145. MR 0159361 (28:2578)
  • 10. S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, Berlin, 1993. MR 1287609 (95j:60103)
  • 11. S. V. Nagaev, Certain limit theorems for homogeneous Markov chains, Teor. Veroyatnost. Primenen. 2 (1957), 389-416; English transl. in Theory Probab. Appl. MR 0094846 (20:1355)
  • 12. E. Nummelin, General Irreducible Markov Chains and Non-Negative Operators, Cambridge University Press, Cambridge, 1984. MR 0776608 (87a:60074)
  • 13. V. V. Petrov, Sums of Independent Random Variables, ``Nauka'', Moscow, 1972; English transl., Springer-Verlag, Berlin, 1975. MR 0322927 (48:1288); MR 0388499 (52:9335)
  • 14. A. Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations, Stoch. Processes Appl. 70 (1997), 115-127. MR 1472961 (99k:60158)
  • 15. -, On polynomial mixing and convergence rate for stochastic difference and differential equations, Theor. Probab. Appl. 44 (2000), no. 2, 361-374. MR 1751475 (2001k:60083)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60J10, 60F05

Retrieve articles in all journals with MSC (2000): 60J10, 60F05

Additional Information

A. Yu. Veretennikov
Affiliation: Institute of Information Transmission Problems, 19 B. Karetnyi, Moscow 101447, Russia
Address at time of publication: School of Mathematics, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, UK

Received by editor(s): April 4, 2002
Published electronically: February 7, 2005
Additional Notes: The work was supported by the grants INTAS-99-0590, EPSRC-GR/R40746/01, NFGRF 2301863, and RFBR-00-01-22000.
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society