Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)



An essay on Gnedenko's theorem

Author: A. Yu. Veretennikov
Translated by: The author
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 69 (2003).
Journal: Theor. Probability and Math. Statist. 69 (2004), 17-25
MSC (2000): Primary 60J10, 60F05
Published electronically: February 7, 2005
MathSciNet review: 2110901
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A local central limit theorem is established for a Markov chain on a lattice under recurrence type assumptions and a simple additional assumption on conditional distributions of the process. The main result extends, in particular, the classical theorem by B. V. Gnedenko for the case of independent identically distributed random variables (1948). Sufficient conditions for recurrence assumptions are provided.

References [Enhancements On Off] (What's this?)

  • 1. Peter W. Glynn and Sean P. Meyn, A Liapounov bound for solutions of the Poisson equation, Ann. Probab. 24 (1996), no. 2, 916–931. MR 1404536, 10.1214/aop/1039639370
  • 2. B. V. Gnedenko, On a local limit theorem of the theory of probability, Uspehi Matem. Nauk (N. S.) 3 (1948), no. 3(25), 187–194 (Russian). MR 0026275
  • 3. B. V. Gnedenko, The theory of probability, Translated from the fourth Russian edition by B. D. Seckler, Chelsea Publishing Co., New York, 1967. MR 0217824
  • 4. B. V. Gnedenko, Ju. K. Beljaev, and A. D. Solov′ev, Matematicheskie metody v teorii nadezhnosti. Osnovnye karakteristiki nadezhnosti i ikh statisticheskii analiz, Izdat. “Nauka”, Moscow, 1965 (Russian). MR 0187987
    B. V. Gnedenko, Yu. K. Belyayev, and A. D. Solovyev, Mathematical methods of reliability theory, Academic Press, New York-London, 1969. Translated by Scripta Technica, Inc; Translation edited by Richard E. Barlow; Probability and Mathematical Statistics, Vol. 6. MR 0345234
  • 5. B. V. Gnedenko and I. N. Kovalenko, Vvedenie v teoriyu massovogo obsluzhivaniya, 2nd ed., \cyr Fiziko-Matematicheskaya Biblioteka Inzhenera. [Library of Mathematics and Physics for the Engineer], “Nauka”, Moscow, 1987 (Russian). MR 912691
  • 6. R. Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoff & Noordhoff, Alphen aan den Rijn, and Rockville, Maryland, 1980. 0600653 (82b:60064)
  • 7. I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov; Translation from the Russian edited by J. F. C. Kingman. MR 0322926
  • 8. A. N. Kolmogorov, A local limit theorem for classical Markov chains, Izvestiya Akad. Nauk SSSR. Ser. Mat. 13 (1949), 281–300 (Russian). MR 0031216
  • 9. John Lamperti, Criteria for stochastic processes. II. Passage-time moments, J. Math. Anal. Appl. 7 (1963), 127–145. MR 0159361
  • 10. S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 1993. MR 1287609
  • 11. S. V. Nagaev, Some limit theorems for stationary Markov chains, Teor. Veroyatnost. i Primenen. 2 (1957), 389–416 (Russian, with English summary). MR 0094846
  • 12. Esa Nummelin, General irreducible Markov chains and nonnegative operators, Cambridge Tracts in Mathematics, vol. 83, Cambridge University Press, Cambridge, 1984. MR 776608
  • 13. V. V. \cyr{P}etrov, Summy nezavisimykh sluchainykh velichin, Izdat. “Nauka”, Moscow, 1972 (Russian). MR 0322927
    V. V. Petrov, Sums of independent random variables, Springer-Verlag, New York-Heidelberg, 1975. Translated from the Russian by A. A. Brown; Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82. MR 0388499
  • 14. A. Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations, Stochastic Process. Appl. 70 (1997), no. 1, 115–127. MR 1472961, 10.1016/S0304-4149(97)00056-2
  • 15. A. Yu. Veretennikov, On polynomial mixing and the rate of convergence for stochastic differential and difference equations, Teor. Veroyatnost. i Primenen. 44 (1999), no. 2, 312–327 (Russian, with Russian summary); English transl., Theory Probab. Appl. 44 (2000), no. 2, 361–374. MR 1751475, 10.1137/S0040585X97977550

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60J10, 60F05

Retrieve articles in all journals with MSC (2000): 60J10, 60F05

Additional Information

A. Yu. Veretennikov
Affiliation: Institute of Information Transmission Problems, 19 B. Karetnyi, Moscow 101447, Russia
Address at time of publication: School of Mathematics, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, UK

Received by editor(s): April 4, 2002
Published electronically: February 7, 2005
Additional Notes: The work was supported by the grants INTAS-99-0590, EPSRC-GR/R40746/01, NFGRF 2301863, and RFBR-00-01-22000.
Article copyright: © Copyright 2005 American Mathematical Society