Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

On the weak convergence of extremes in some Banach spaces


Author: I. K. Matsak
Translated by: V. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 69 (2003).
Journal: Theor. Probability and Math. Statist. 69 (2004), 141-152
MSC (2000): Primary 60B12
DOI: https://doi.org/10.1090/S0094-9000-05-00621-6
Published electronically: February 9, 2005
MathSciNet review: 2110912
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The weak convergence of random elements

\begin{displaymath}U_n=b_n (Z_n -a_n \mathfrak{S}) \end{displaymath}

is studied for Banach spaces with an unconditional basis, where $Z_n= \max _{1\leq k \leq n} X_k$ and $X_k$, $k\geq 1$, are independent copies of a random element $X$.


References [Enhancements On Off] (What's this?)

  • 1. B. V. Gnedenko, Sur la distribution limit du terme maximum d'une série aléatoire, Ann. Math. 44 (1943), 423-453. MR 0008655 (5:41b)
  • 2. J. Galambos, The Asymptotic Theory of Extreme Order Statistics, Wiley, New York-Chichester-Brisbane-Toronto, 1978. MR 0489334 (80b:60040)
  • 3. M. R. Leadbetter, G. Lindgren, and H. Rootzén, Extremes and Related Properties of Random Sequences and Processes, Springer, New York, 1983. MR 0691492 (84h:60050)
  • 4. I. K. Matsak, The weak convergence of extreme values of independent random elements in Banach spaces with an unconditional basis, Ukr. Matem. Zh. 48 (1996), no. 6, 805-812; English. transl. in Ukrain. Math. J. 48 (1996), no. 6, 905-913 (1997). MR 1418157 (97i:60007)
  • 5. -, On integral functionals of extreme value random functions, Teor. Imovir. Mat. Statist. 65 (2001), 110-120; English transl. in Theory Probab. Math. Statist. 65 (2001), 123-134. MR 1936135 (2004g:60010)
  • 6. J. Lindenstraus and L. Tzafriri, Classical Banach Spaces, Springer-Verlag, Berlin, 1979. MR 0540367 (81c:46001)
  • 7. J. Geffroy, Contributions à la théorie des valeurs extrêmes, Publ. Inst. Statist. Univ. Paris 7/8 (1958/59), 37-185. MR 0105168 (21:3911)
  • 8. Ahmed E. Sarhan and Bernard G. Greenberg, Contributions to Order Statistics, Wiley, New York, 1962. MR 0169336 (29:6587)
  • 9. E. Seneta, Regularly Varying Functions, Springer-Verlag, Berlin-Heidelberg-New York, 1976. MR 0453936 (56:12189)
  • 10. J. Galambos and E. Seneta, Regularly varying sequences, Proc. Amer. Math. Soc. 41 (1973), 110-116. MR 0323963 (48:2316)
  • 11. N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability Distributions on Banach Spaces, ``Nauka'', Moscow, 1985; English transl., Kluwer, Dordrecht, 1987. MR 0787803 (86j:60014)
  • 12. I. K. Matsak and A. M. Plichko, On maxima of independent random elements in a Banach function lattice, Teor. Imovir. Matem. Statist. 61 (1999), 105-116; English transl. in Theory Probab. Math. Statist. 61 (2000), 109-120. MR 1866964 (2002k:60020)
  • 13. J. Pickands, Moment convergence of sample extremes, Ann. Math. Statist. 39 (1968), 881-889. MR 0224231 (36:7275)
  • 14. S. A. Chobanyan and V. I. Tarieladze, Gaussian characterizations of certain Banach spaces, J. Multivar. Anal. 7 (1977), no. 1, 183-203. MR 0433572 (55:6545)
  • 15. J.-P. Kahane, Some Random Series of Functions, D. C. Heath, Lexington, MA, 1968. MR 0254888 (40:8095)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60B12

Retrieve articles in all journals with MSC (2000): 60B12


Additional Information

I. K. Matsak
Affiliation: Kyiv National University of Technology and Design, Nemyrovych-Danchenko Street 2, Kyiv 02011, Ukraine
Email: infor1@vtv.kiev.ua

DOI: https://doi.org/10.1090/S0094-9000-05-00621-6
Received by editor(s): June 26, 2002
Published electronically: February 9, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society