Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Explicit extrapolation formulas for correlation models of homogeneous isotropic random fields


Authors: N. V. Semenovs'ka and M. I. Yadrenko
Translated by: V. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 69 (2003).
Journal: Theor. Probability and Math. Statist. 69 (2004), 175-185
MSC (2000): Primary 60J60, 60J12, 60J25
DOI: https://doi.org/10.1090/S0094-9000-05-00624-1
Published electronically: February 9, 2005
MathSciNet review: 2110915
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For some correlation models of homogeneous isotropic random fields, we obtain explicit formulas for linear extrapolation of a random field to the center of a sphere from observations on the sphere.


References [Enhancements On Off] (What's this?)

  • 1. M. I. Yadrenko, Spectral Theory of Random Fields, ``Vyshcha Shkola'', Kiev, 1980; English transl., Optimization Software, Inc., New York, 1983. MR 0590889 (82e:60001)
  • 2. A. M. Yaglom, Some classes of random fields in $n$-dimensional space related to stationary random processes, Teor. Veroyatnost. i Primenen. 2 (1957), no. 3, 292-338; English transl. in Theory Probab. Appl. 2 (1957), no. 3, 273-320. MR 0094844 (20:1353)
  • 3. C. E. Buell, Correlation functions for wind and geopotential on isobaric surfaces, J. Appl. Meteor. 11 (1972), 51-59.
  • 4. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Gos. Izdat. Fiz. Mat. Literat., Moscow, 1963; English transl., Sixth edition, Academic Press, San Diego, CA, 2000. MR 1773820 (2001c:00002)
  • 5. M. I. Yadrenko, Some statistical problems for the Whittle random field, Teor. Imovir. Mat. Stat. 63 (2000), 163-167; English transl. in Theory Probab. Math. Statist. 63 (2001), 179-183. MR 1870787 (2002m:60097)
  • 6. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edition, Cambridge University Press, Cambridge, 1995. MR 1349110 (96i:33010)
  • 7. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Based in part on notes left by Harry Bateman, vol. 1, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. MR 0058756 (15:419i)
  • 8. -, Higher Transcendental Functions, Based in part on notes left by Harry Bateman, vol. 2, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. MR 0058756 (15:419i)
  • 9. M. I. Yadrenko, Isotropic random fields of Markov type in Euclidean and Hilbert spaces, Proc. All-Union Conf. Theory Prob. and Math. Statist. (Erevan, 1958), Izdat. Akad. Nauk Armyan. SSR, Erevan, 1960, pp. 263-279. (Russian) MR 0214123 (35:4974)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60J60, 60J12, 60J25

Retrieve articles in all journals with MSC (2000): 60J60, 60J12, 60J25


Additional Information

N. V. Semenovs'ka
Affiliation: Department of Probability Theory and Mathematical Statistics, Faculty of Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email: semenovsky@hotmail.ru

M. I. Yadrenko
Affiliation: Department of Probability Theory and Mathematical Statistics, Faculty of Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email: ymi@mechmat.univ.kiev.ua

DOI: https://doi.org/10.1090/S0094-9000-05-00624-1
Keywords: Random fields, Whittle--Mattern correlation model, linear extrapolation
Received by editor(s): February 14, 2003
Published electronically: February 9, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society