Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Some properties of asymptotic quasi-inverse functions and their applications I


Authors: V. V. Buldygin, O. I. Klesov and J. G. Steinebach
Translated by: The authors
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 70 (2004).
Journal: Theor. Probability and Math. Statist. 70 (2005), 11-28
MSC (2000): Primary 26A12; Secondary 60F15
DOI: https://doi.org/10.1090/S0094-9000-05-00627-7
Published electronically: August 5, 2005
MathSciNet review: 2109819
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce the notions of asymptotic quasi-inverse functions and asymptotic inverse functions as weaker versions of (quasi-)inverse functions, and study their main properties. Asymptotic quasi-inverse functions exist in the class of so-called pseudo-regularly varying (PRV) functions, i.e. functions preserving the asymptotic equivalence of functions and sequences. On the other hand, asymptotic inverse functions exist in the class of so-called POV functions, i.e., functions with positive order of variation. In this paper, we obtain some new results about PRV and POV functions. Some further properties of asymptotic (quasi-)inverse functions as well as some applications will be discussed in Part II of this paper to appear in no. 71 of this journal.


References [Enhancements On Off] (What's this?)

  • 1. S. Aljančić and D. AranÄ‘elović, 0-regularly varying functions, Publ. Inst. Math. (Beograd) (N.S.) 22(36) (1977), 5–22. MR 0466438
  • 2. V. G. Avakumovic, Über einen O-Inversionssatz, Bull. Int. Acad. Youg. Sci. 29-30 (1936), 107-117.
  • 3. N. K. Bari and S. B. Stečkin, Best approximations and differential properties of two conjugate functions, Trudy Moskov. Mat. Obšč. 5 (1956), 483–522 (Russian). MR 0080797
  • 4. N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge University Press, Cambridge, 1987. MR 0898871 (88i:26004)
  • 5. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, Properties of a subclass of Avakumović functions and their generalized inverses, Ukraïn. Mat. Zh. 54 (2002), no. 2, 149–169 (English, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 54 (2002), no. 2, 179–206. MR 1952816, https://doi.org/10.1023/A:1020178327423
  • 6. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, On asymptotic quasi-inverse functions, Theory Stoch. Process. 9 (2003), no. 1-2, 30–51. MR 2080011
  • 7. V. V. Buldygin, O. I. Klesov, and J. G. Steinebach, Some properties of asymptotic quasi-inverse functions and their applications II, Theor Probab. Math. Statist. 71 (2004), 33-48.
  • 8. D. Drasin and E. Seneta, A generalization of slowly varying functions, Proc. Amer. Math. Soc. 96 (1986), no. 3, 470-472. MR 0822442 (87d:26002)
  • 9. J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica (Cluj) 4 (1930), 38-53.
  • 10. J. Karamata, Bemerkung über die vorstehende Arbeit des Herrn Avakumovic, mit näherer Betrachtung einer Klasse von Funktionen, welche bei den Inversionssätzen vorkommen, Bull. Int. Acad. Youg. Sci. 29-30 (1936), 117-123.
  • 11. Oleg Klesov, Zdzisław Rychlik, and Josef Steinebach, Strong limit theorems for general renewal processes, Probab. Math. Statist. 21 (2001), no. 2, Acta Univ. Wratislav. No. 2328, 329–349. MR 1911442
  • 12. B. I. Korenblyum, On the asymptotic behavior of Laplace integrals near the boundary of a region of convergence, Dokl. Akad. Nauk SSSR (N.S.) 104 (1955), 173–176. MR 0074550
  • 13. H. S. A. Potter, The mean values of certain Dirichlet series, II, Proc. London Math. Soc. (2) 47 (1940), 1–19. MR 0005141, https://doi.org/10.1112/plms/s2-47.1.1
  • 14. Eugene Seneta, Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR 0453936
  • 15. U. Stadtmüller and R. Trautner, Tauberian theorems for Laplace transforms, J. Reine Angew. Math. 311/312 (1979), 283-290. MR 0549970 (81f:44006)
  • 16. A. L. Yakymiv, Asymptotics of the probability of nonextinction of critical Bellman-Harris branching processes, Proc. Steklov Inst. Math. 4 (1988), 189-217. MR 0840684 (88d:60221)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 26A12, 60F15

Retrieve articles in all journals with MSC (2000): 26A12, 60F15


Additional Information

V. V. Buldygin
Affiliation: Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine (KPI), Peremogy 37, Kyiv 03056, Ukraine
Email: valbuld@comsys.ntu-kpi.kiev.ua

O. I. Klesov
Affiliation: Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine (KPI), Peremogy 37, Kyiv 03056, Ukraine
Email: oleg@tbimc.freenet.kiev.ua

J. G. Steinebach
Affiliation: Universität zu Köln, Mathematisches Institut, Weyertal 86–90, D–50931 Köln, Germany
Email: jost@math.uni-koeln.de

DOI: https://doi.org/10.1090/S0094-9000-05-00627-7
Received by editor(s): September 14, 2003
Published electronically: August 5, 2005
Additional Notes: This work was partially supported by Deutsche Forschungsgemeinschaft under DFG grants 436 UKR 113/41/0-2 and 436 UKR 113/68/0-1.
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society