Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

A new (probabilistic) proof of the Diaz-Metcalf and Pólya-Szego inequalities and some applications


Author: Tibor K. Pogány
Translated by: The author
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 70 (2004).
Journal: Theor. Probability and Math. Statist. 70 (2005), 113-122
MSC (2000): Primary 26D15, 60E15
DOI: https://doi.org/10.1090/S0094-9000-05-00635-6
Published electronically: August 12, 2005
MathSciNet review: 2109828
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Diaz-Metcalf and Pólya-Szego inequalities are proved in the probabilistic setting. These results generalize the classical case for both sums and integrals. Using these results we obtain some other well-known inequalities in the probabilistic setting, namely the Kantorovich, Rennie, and Schweitzer inequalities.


References [Enhancements On Off] (What's this?)

  • 1. V. Csiszár and T. F. Móri, The convexity method of proving moment type inequalities, Stat. Probab. Lett. 66 (2004), no. 3, 303-313. MR 2045475 (2005g:60032)
  • 2. J. B. Diaz and F. T. Metcalf, Stronger forms of a class of inequalities of G. Pólya-G. Szego and L. V. Kantorovich, Bull. Amer. Math. Soc. 69 (1963), 415-418. MR 0146324 (26:3846)
  • 3. W. Greub and W. Rheinboldt, On a generalization of an inequality of L. V. Kantorovich, Proc. Amer. Math. Soc. 10 (1959), 407-415. MR 0105028 (21:3774)
  • 4. L. V. Kantorovich, Functional analysis and applied mathematics, Uspekhi Matem. Nauk (N.S.) 3 (1948), no. 6(28), 89-185. (Russian) MR 0027947 (10:380a)
  • 5. O. I. Klesov, Letter to the author (2003). (Unpublished)
  • 6. D. S. Mitrinovic, Analiticke nejednakosti, Gradevinska Knjiga, Beograd, 1970. MR 0279261 (43:4984)
  • 7. D. S. Mitrinovic and J. E. Pecaric, Mean Values in Mathematics, Matematicki problemi i ekspozicije, vol. 14, Naucna Knjiga, Beograd, 1989.
  • 8. G. Pólya and G. Szego, Problems and Theorems in Analysis, Classics in Mathematics Series, vol. I, Springer-Verlag, New York, 1976. MR 1492448
  • 9. B. C. Rennie, On a class of inequalities, J. Austral. Math. Soc. 3 (1963), 442-448. MR 0166313 (29:3590)
  • 10. P. Schweitzer, An inequality concerning the arithmetic mean, Math. Phys. Lapok 23 (1914), 257-261. (Hungarian)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 26D15, 60E15

Retrieve articles in all journals with MSC (2000): 26D15, 60E15


Additional Information

Tibor K. Pogány
Affiliation: Faculty of Maritime Studies, University of Rijeka, Studentska 2, 51000 Rijeka, Croatia
Email: poganj@brod.pfri.hr

DOI: https://doi.org/10.1090/S0094-9000-05-00635-6
Keywords: Almost surely bounded random variable, Diaz--Metcalf inequality, discrete inequality, integral inequality, Kantorovich inequality, mathematical expectation, P\'olya--Szeg\H o inequality, Rennie inequality, Schweitzer inequality
Received by editor(s): March 20, 2002
Published electronically: August 12, 2005
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society