Properties of distributions of random variables with independent differences of consecutive elements of the Ostrogradskii series

Authors:
M. V. Prats'ovytyi and O. M. Baranovs'kii

Translated by:
V. Zayats

Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom **70** (2004).

Journal:
Theor. Probability and Math. Statist. **70** (2005), 147-160

MSC (2000):
Primary 60E05, 26A30; Secondary 11A67, 11K55

Published electronically:
August 12, 2005

MathSciNet review:
2110871

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Several metric relations for representations of real numbers by the Ostrogradski type 1 series are obtained. These relations are used to prove that a random variable with independent differences of consecutive elements of the Ostrogradski type 1 series has a pure distribution, that is, its distribution is either purely discrete, or purely singular, or purely absolutely continuous. The form of the distribution function and that of its derivative are found. A criterion for discreteness and sufficient conditions for the distribution spectrum to have zero Lebesgue measure are established.

**1.**E. Ya. Remez,*On series with alternating sign which may be connected with two algorithms of M. V. Ostrogradskiĭ for the approximation of irrational numbers*, Uspehi Matem. Nauk (N.S.)**6**(1951), no. 5(45), 33–42 (Russian). MR**0044585****2.**W. Sierpinski,*O kilku algoritmach dla rozwijania liczb rzeczywistych na szeregi*, Sprawozdania z posiedzen Towarzystwa Naukowego Warszawskiego**4**(1911), 56-77.**3.**T. A. Pierce,*On an algorithm and its use in approximating roots of an algebraic equation*, Amer. Math. Monthly**36**(1929), 523-525.**4.**Fritz Schweiger,*Ergodic theory of fibred systems and metric number theory*, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR**1419320****5.**A. Ya. Khinchin,*Continued fractions*, Translated from the third (1961) Russian edition, Dover Publications, Inc., Mineola, NY, 1997. With a preface by B. V. Gnedenko; Reprint of the 1964 translation. MR**1451873****6.**P. I. \cyr{B}odnarchuk and V. Ya. \cyr{S}korobogat′ko,*Gilljsti lantsyugovi drobi taih zastosuvannya*, “Naukova Dumka”, Kiev, 1974 (Ukrainian). MR**0353626****7.**Yu. V. Mel'nichuk,*-adic continued fractions constructed using the Euclid algorithm and the Ostrogradski algorithm*, Proc. Conf. ``Computative Mathematics in Modern Scientific and Technical Progress'', Kanev, 1974, pp. 259-265. (Russian)**8.**V. Ja. Skorobogat′ko (ed.),*Tsepnye drobi i ikh primeneniya*, Izdanie Inst. Mat., Akad. Nauk Ukrain. SSR, Kiev, 1976 (Russian). MR**0505986****9.**K. G. Valēēv and E. D. Zlēbov,*The metric theory of an algorithm of M. V. Ostrogradskiĭ*, Ukrain. Mat. Ž.**27**(1975), 64–69, 142 (Russian). MR**0366855****10.**Sofia Kalpazidou, Arnold Knopfmacher, and John Knopfmacher,*Lüroth-type alternating series representations for real numbers*, Acta Arith.**55**(1990), no. 4, 311–322. MR**1069185****11.**M. V. Prats'oviti,*A Fractional Approach to Studying Singular Distributions*, M. P. Dragomanov National Pedagog. Univ., Kyïv, 1998. (Ukrainian)**12.**M. V. Prats′ovitiĭ and O. L. Leshchins′kiĭ,*Properties of random variables defined by the distributions of the elements of their 𝑄_{∞}-representation*, Teor. Ĭmovīr. Mat. Stat.**57**(1997), 134–139 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist.**57**(1998), 143–148 (1999). MR**1806893****13.**O. M. Baranovs'kii,*Ostrogradski series as a mean of analytic representation of sets and random variables*, Fractal Analysis and Related Problems, M. P. Dragomanov National Pedagog. Univ., Kyïv, 1998, pp. 91-102. (Ukrainian)**14.**O. M. Baranovs'kii,*Some problems in the metric theory of numbers represented by the Ostrogradski type 1 series*, Scientific Proc., Physical and Math. Sciences, M. P. Dragomanov National Pedagog. Univ., Kyïv, 2002, pp. 391-402. (Ukrainian)**15.**I. P. Natanson,*Teoriya funkciĭ veščestvennoĭ peremennoĭ*, Gosudarstv. Izdat. Tehn.-Teor. Lit.,], Moscow-Leningrad, 1950 (Russian). MR**0039790**

I. P. Natanson,*Theory of functions of a real variable*, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron with the collaboration of Edwin Hewitt. MR**0067952**

Retrieve articles in *Theory of Probability and Mathematical Statistics*
with MSC (2000):
60E05,
26A30,
11A67,
11K55

Retrieve articles in all journals with MSC (2000): 60E05, 26A30, 11A67, 11K55

Additional Information

**M. V. Prats'ovytyi**

Affiliation:
Dragomanov National Pedagogical University, Pyrogov Street 9, Kyïv 01601, Ukraine

Email:
prats@ukrpost.net

**O. M. Baranovs'kii**

Affiliation:
Dragomanov National Pedagogical University, Pyrogov Street 9, Kyïv 01601, Ukraine

DOI:
https://doi.org/10.1090/S0094-9000-05-00638-1

Received by editor(s):
April 11, 2003

Published electronically:
August 12, 2005

Article copyright:
© Copyright 2005
American Mathematical Society