Properties of distributions of random variables with independent differences of consecutive elements of the Ostrogradskii series
Authors:
M. V. Prats'ovytyi and O. M. Baranovs'kii
Translated by:
V. Zayats
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 70 (2004).
Journal:
Theor. Probability and Math. Statist. 70 (2005), 147160
MSC (2000):
Primary 60E05, 26A30; Secondary 11A67, 11K55
Published electronically:
August 12, 2005
MathSciNet review:
2110871
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Several metric relations for representations of real numbers by the Ostrogradski type 1 series are obtained. These relations are used to prove that a random variable with independent differences of consecutive elements of the Ostrogradski type 1 series has a pure distribution, that is, its distribution is either purely discrete, or purely singular, or purely absolutely continuous. The form of the distribution function and that of its derivative are found. A criterion for discreteness and sufficient conditions for the distribution spectrum to have zero Lebesgue measure are established.
 1.
E.
Ya. Remez, On series with alternating sign which may be connected
with two algorithms of M. V. Ostrogradskiĭ\ for the approximation of
irrational numbers, Uspehi Matem. Nauk (N.S.) 6
(1951), no. 5(45), 33–42 (Russian). MR 0044585
(13,444d)
 2.
W. Sierpinski, O kilku algoritmach dla rozwijania liczb rzeczywistych na szeregi, Sprawozdania z posiedzen Towarzystwa Naukowego Warszawskiego 4 (1911), 5677.
 3.
T. A. Pierce, On an algorithm and its use in approximating roots of an algebraic equation, Amer. Math. Monthly 36 (1929), 523525.
 4.
Fritz
Schweiger, Ergodic theory of fibred systems and metric number
theory, Oxford Science Publications, The Clarendon Press, Oxford
University Press, New York, 1995. MR 1419320
(97h:11083)
 5.
A.
Ya. Khinchin, Continued fractions, Translated from the third
(1961) Russian edition, Dover Publications, Inc., Mineola, NY, 1997. With a
preface by B. V. Gnedenko; Reprint of the 1964 translation. MR 1451873
(98c:11008)
 6.
P.
I. \cyr{B}odnarchuk and V.
Ya. \cyr{S}korobogat′ko, Gilljsti lantsyugovi drobi taih
zastosuvannya, “Naukova Dumka”, Kiev, 1974 (Ukrainian). MR 0353626
(50 #6109)
 7.
Yu. V. Mel'nichuk, adic continued fractions constructed using the Euclid algorithm and the Ostrogradski algorithm, Proc. Conf. ``Computative Mathematics in Modern Scientific and Technical Progress'', Kanev, 1974, pp. 259265. (Russian)
 8.
V.
Ja. Skorobogat′ko (ed.), Tsepnye drobi i ikh
primeneniya, Izdanie Inst. Mat., Akad. Nauk Ukrain. SSR, Kiev, 1976
(Russian). MR
0505986 (58 #21908)
 9.
K.
G. Valēēv and E.
D. Zlēbov, The metric theory of an algorithm of M. V.
Ostrogradskiĭ, Ukrain. Mat. Ž. 27
(1975), 64–69, 142 (Russian). MR 0366855
(51 #3101)
 10.
Sofia
Kalpazidou, Arnold
Knopfmacher, and John
Knopfmacher, Lürothtype alternating series representations
for real numbers, Acta Arith. 55 (1990), no. 4,
311–322. MR 1069185
(91i:11011)
 11.
M. V. Prats'oviti, A Fractional Approach to Studying Singular Distributions, M. P. Dragomanov National Pedagog. Univ., Kyïv, 1998. (Ukrainian)
 12.
M.
V. Prats′ovitiĭ and O.
L. Leshchins′kiĭ, Properties of random variables
defined by the distributions of the elements of their
𝑄_{∞}representation, Teor. Ĭmovīr. Mat.
Stat. 57 (1997), 134–139 (Ukrainian, with Ukrainian
summary); English transl., Theory Probab. Math. Statist.
57 (1998), 143–148 (1999). MR 1806893
(2003b:60024)
 13.
O. M. Baranovs'kii, Ostrogradski series as a mean of analytic representation of sets and random variables, Fractal Analysis and Related Problems, M. P. Dragomanov National Pedagog. Univ., Kyïv, 1998, pp. 91102. (Ukrainian)
 14.
O. M. Baranovs'kii, Some problems in the metric theory of numbers represented by the Ostrogradski type 1 series, Scientific Proc., Physical and Math. Sciences, M. P. Dragomanov National Pedagog. Univ., Kyïv, 2002, pp. 391402. (Ukrainian)
 15.
I.
P. Natanson, Teoriya funkciĭ\
veščestvennoĭ\ peremennoĭ, Gosudarstv.
Izdat. Tehn.Teor. Lit.,], MoscowLeningrad, 1950 (Russian). MR 0039790
(12,598d)
I.
P. Natanson, Theory of functions of a real variable, Frederick
Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron with the
collaboration of Edwin Hewitt. MR 0067952
(16,804c)
 1.
 E. Ya. Remez, On series with alternating sign which may be connected with two algorithms of M. V. Ostrogradski for the approximation of irrational numbers, Uspehi Matem. Nauk (N.S.) 6 (1951), no. 5 (45), 3342. (Russian) MR 0044585 (13:444d)
 2.
 W. Sierpinski, O kilku algoritmach dla rozwijania liczb rzeczywistych na szeregi, Sprawozdania z posiedzen Towarzystwa Naukowego Warszawskiego 4 (1911), 5677.
 3.
 T. A. Pierce, On an algorithm and its use in approximating roots of an algebraic equation, Amer. Math. Monthly 36 (1929), 523525.
 4.
 F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory, Oxford Univ. Press, New York, 1995. MR 1419320 (97h:11083)
 5.
 A. Ya. Khinchin, Continued Fractions, 3rd ed., Fizmatgiz, Moscow, 1961; English transl., Dover Publications Inc., Mineola, NY, 1997. MR 1451873 (98c:11008)
 6.
 P. I. Bodnarchuk, V. Ya. Skorobogat'ko, Branching Continued Fractions and Their Applications, ``Naukova Dumka'', Kyïv, 1974. (Ukrainian) MR 0353626 (50:6109)
 7.
 Yu. V. Mel'nichuk, adic continued fractions constructed using the Euclid algorithm and the Ostrogradski algorithm, Proc. Conf. ``Computative Mathematics in Modern Scientific and Technical Progress'', Kanev, 1974, pp. 259265. (Russian)
 8.
 Yu. V. Mel'nichuk, On representation of real numbers by quickly convergent series, Continued Fractions and Their Applications, Inst. Mat., Akad. Nauk Ukrain. SSR, Kiev, 1976, pp. 7778. (Russian) MR 0505986 (58:21908)
 9.
 K. G. Valeev and E. D. Zlebov, The metric theory of the Ostrogradski algorithm, Ukrain. Mat. Zh. 27 (1975), no. 1, 6469; English transl. in Ukrainian Math. J. 27 (1975), no. 1, 4751. MR 0366855 (51:3101)
 10.
 S. Kalpazidou, A. Knopfmacher, and J. Knopfmacher, Lürothtype alternating series representations for real numbers, Acta Arith. 55 (1990), 311322. MR 1069185 (91i:11011)
 11.
 M. V. Prats'oviti, A Fractional Approach to Studying Singular Distributions, M. P. Dragomanov National Pedagog. Univ., Kyïv, 1998. (Ukrainian)
 12.
 M. V. Prats'oviti, O. L. Leshchins'ki, Properties of random variables defined by the distributions of the elements of their representation, Teor. Imovr. Mat. Stat. 57 (1997), 134140; English transl. in Theory Probab. Math. Statist. 57 (1998), 143148. MR 1806893 (2003b:60024)
 13.
 O. M. Baranovs'kii, Ostrogradski series as a mean of analytic representation of sets and random variables, Fractal Analysis and Related Problems, M. P. Dragomanov National Pedagog. Univ., Kyïv, 1998, pp. 91102. (Ukrainian)
 14.
 O. M. Baranovs'kii, Some problems in the metric theory of numbers represented by the Ostrogradski type 1 series, Scientific Proc., Physical and Math. Sciences, M. P. Dragomanov National Pedagog. Univ., Kyïv, 2002, pp. 391402. (Ukrainian)
 15.
 I. P. Natanson, Theory of Functions of a Real Variable, ``Nauka'', Moscow, 1972; English transl., Frederick Ungar Publishing Co., New York, 1955. MR 0039790 (12:598d); MR 0067952 (16:804c)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2000):
60E05,
26A30,
11A67,
11K55
Retrieve articles in all journals
with MSC (2000):
60E05,
26A30,
11A67,
11K55
Additional Information
M. V. Prats'ovytyi
Affiliation:
Dragomanov National Pedagogical University, Pyrogov Street 9, Kyïv 01601, Ukraine
Email:
prats@ukrpost.net
O. M. Baranovs'kii
Affiliation:
Dragomanov National Pedagogical University, Pyrogov Street 9, Kyïv 01601, Ukraine
DOI:
http://dx.doi.org/10.1090/S0094900005006381
PII:
S 00949000(05)006381
Received by editor(s):
April 11, 2003
Published electronically:
August 12, 2005
Article copyright:
© Copyright 2005
American Mathematical Society
