Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Some remarks on the ordinal strong law of large numbers


Author: I. K. Matsak
Translated by: Oleg Klesov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 72 (2005).
Journal: Theor. Probability and Math. Statist. 72 (2006), 93-102
MSC (2000): Primary 60B12
DOI: https://doi.org/10.1090/S0094-9000-06-00667-3
Published electronically: August 18, 2006
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the ordinal law of large numbers and the law of large numbers in the norm are equivalent for Banach lattices that do not contain uniformly the space $ l_1^n$.


References [Enhancements On Off] (What's this?)

  • 1. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991. MR 1102015 (93c:60001)
  • 2. J. Hoffmann-Jørgensen, Probability in $ B$-spaces, Lect. Notes Series, vol. 48, Springer, Berlin, 1977. MR 0474447 (57:14087)
  • 3. J. Lindenstraus and L. Tzafriri, Classical Banach Spaces, vol. 2, Springer, Berlin, 1979. MR 0415253 (54:3344)
  • 4. L. V. Kantorovich and G. P. Akilov, Functional Analysis, ``Nauka'', Moscow, 1984; English transl., Pergamon Press, New York, 1982. MR 0664597 (83h:46002)
  • 5. I. K. Matsak, The ordinal law of large numbers in Banach lattices, Teor. Imovirnost. Matem. Statist. 62 (2000), 83-95; English transl. in Theory Probab. Math. Stat. 62 (2001), 89-102.
  • 6. W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403 (425292)
  • 7. G. Pizier, Sur les espaces qui ne contiennent pas $ l^1_n$ uniformement, Séminaire Maurey-Schwartz 1973-74, Ecole Politechnique, Paris, 1974. MR 0270403 (42:5292)
  • 8. A. V. Bukhvalov, A. I. Veksler, and V. A. Geiler, Normed lattices, Itogi nauki. Mathematicheskii Analis, vol. 18, Akad. Nauk SSSR, Vsesoyuzn. Inst. Nauchn. i Tekhn. Informatsii, Moscow, 1980, pp. 125-184. (Russian) MR 0597904 (82b:46019)
  • 9. I. K. Matsak and A. M. Plichko, On the maxima of independent random elements in a Banach functional lattice, Teor. Imovirnost. Matem. Statist. 61 (1999), 105-116; English transl. in Theory Probab. Math. Stat. 61 (2000), 109-120. MR 1866964 (2002k:60020)
  • 10. J. A. Wellner, A martingale inequality for the empirical process, Ann. Probab. 5 (1977), no. 2, 303-308. MR 0436296 (55:9243)
  • 11. N. N. Vakhania, V. I. Tarieladze, and S. A. Chobanyan, Probability Distributions on Banach Spaces, ``Nauka'', Moscow, 1985; English transl., D. Reidel Publishing Co., Dordrecht, 1987. MR 1435288 (97k:60007)
  • 12. A. V. Skorokhod, Random Processes with Independent Increments, ``Nauka'', Moscow, 1964; English transl., Kluwer Academic Publishers Group, Dordrecht, 1991. MR 0182056 (31:6280); MR 1155400 (93a:60114)
  • 13. J.-P. Kahane, Some Series of Functions, D. C. Heath and Company, Lexington, Massachusetts, 1968. MR 0182056 (31:6280)
  • 14. I. K. Matsak, Estimates for the moments of the supremum of normed sums of independent random variables, Teor. Imovirnost. Matem. Statist. 67 (2002), 104-116; English transl. in Theory Probab. Math. Stat. 67 (2003), 115-128. MR 1956624 (2004i:60061)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60B12

Retrieve articles in all journals with MSC (2000): 60B12


Additional Information

I. K. Matsak
Affiliation: Department of Probability Theory and Mathematical Statistics, Faculty for Mathematics and Mechanics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email: d.i.m.@ukrpost.net

DOI: https://doi.org/10.1090/S0094-9000-06-00667-3
Received by editor(s): January 15, 2004
Published electronically: August 18, 2006
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society