The problem of estimation of unknown mean value for some correlation models of homogeneous and isotropic random fields
Authors:
M. I. Yadrenko and N. Semenovs'ka
Translated by:
Oleg Klesov
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 72 (2005).
Journal:
Theor. Probability and Math. Statist. 72 (2006), 193-201
MSC (2000):
Primary 60J60, 60J12, 60J25
DOI:
https://doi.org/10.1090/S0094-9000-06-00676-4
Published electronically:
September 6, 2006
MathSciNet review:
2168148
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: We obtain explicit formulas for the variance of a linear unbiased estimator of unknown mean value for some correlation models of homogeneous and isotropic random fields.
- 1. M. I. Yadrenko, Spectral Theory of Random Fields, ``Vyshcha shkola'', Kiev, 1980; English transl., Optimization Software, Inc., Publications Division, New York, 1983. MR 0697386 (84f:60003)
- 2. N. Semenovs'ka and M. I. Yadrenko, Explicit extrapolation formulas for some correlation models of homogeneous and isotropic random fields, Teor. Imovirnost. Matem. Statist. 69 (2003), 162-171; English transl. in Theory Probab. Math. Statist. 69 (2004), 175-185. MR 2110915 (2005k:60160)
- 3.
A. M. Yaglom, Certain types of random fields in
-dimensional space similar to stationary stochastic processes, Teor. Veroyatnost. i Primenen. 2 (1957), no. 3, 292-338. (Russian) MR 0094844 (20:1353)
- 4. C. E. Buell, Correlation functions for wind and geopotential on isobaric surfaces, J. Appl. Meteorology 11 (1972), 51-59.
- 5. I. S. Gradstein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963; English transl., Academic Press, Boston, 1994. MR 0161996 (28:5198)
- 6. M. I. Yadrenko, Some statistical problems for the Whittle random processes, Teor. Imovirnost. Matem. Statist. 63 (2000), 163-167; English transl. in Theory Probab. Math. Statist. 63 (2001), 179-183. MR 1870787 (2002m:60097
- 7. G. N. Watson, A Treatise on the Theory of Bessel Functions, vol. 1, Cambridge University Press, Cambridge-New York, 1944. MR 0010746 (6:64a)
- 8. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, vol. 1, McGraw-Hill Book Company, New York-Toronto-London, 1953. MR 0058756 (15:419i)
- 9. -, Higher Transcendental Functions, vol. 2, McGraw-Hill Book Company, New York-Toronto-London, 1953. MR 0058756 (15:419i)
- 10. M. I. Yadrenko, Isotropic random fields of Markov type in Euclidean and Hilbert spaces, Proc. All-Union Conf. Theory Prob. and Math. Statist. (Erevan, 1958), Izdat. Akad. Nauk Armjan. SSR, Erevan, 1960, 263-285. (Russian) MR 0214123 (35:4974)
Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60J60, 60J12, 60J25
Retrieve articles in all journals with MSC (2000): 60J60, 60J12, 60J25
Additional Information
M. I. Yadrenko
Affiliation:
Department of Probability Theory and Mathematical Statistics, Faculty for Mathematics and Mechanics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
N. Semenovs'ka
Affiliation:
Department of Probability Theory and Mathematical Statistics, Faculty for Mathematics and Mechanics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email:
semenovsky@hotmail.ru
DOI:
https://doi.org/10.1090/S0094-9000-06-00676-4
Keywords:
Random field,
Whittle--Mattern model,
linear unbiased model
Received by editor(s):
June 5, 2004
Published electronically:
September 6, 2006
Article copyright:
© Copyright 2006
American Mathematical Society