Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Laws of iterated logarithm for stochastic integrals of generalized sub-Gaussian processes


Authors: A. Castellucci and R. Giuliano Antonini
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 73 (2005).
Journal: Theor. Probability and Math. Statist. 73 (2006), 47-56
MSC (2000): Primary 60F15; Secondary 60G44
DOI: https://doi.org/10.1090/S0094-9000-07-00680-1
Published electronically: January 17, 2007
MathSciNet review: 2213840
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the behavior of $ \phi$-sub-Gaussian martingales $ (M_t)_{t>0}$ as $ t \to 0$. Applications are given to the stochastic integral of a particular kind of process and to the double stochastic integral of it with respect to two independent Brownian motions.


References [Enhancements On Off] (What's this?)

  • 1. V. V. Buldygin and Yu. V. Kozachenko, Metric Characterization of Random Variables and Random Processes, AMS, Providence, RI, 2000. MR 1743716 (2001g:60089)
  • 2. W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, Wiley, 1971. MR 0270403 (42:5292)
  • 3. R. Giuliano Antonini and Yu. V. Kozachenko, A note on the asymptotic behavior of sequences of generalized sub-Gaussian random vectors, Random Oper. Stochastic Equations 13 (2005), 39-52. MR 2130246 (2006b:60020)
  • 4. R. Giuliano Antonini, Yu. V. Kozachenko, and T. Nikitina, Spaces of $ \phi$-sub-Gaussian random variables, Rend. Acc. Naz. delle Scienze detta dei XL, Mem. Mat. Appl. 121 (2003), 95-124. MR 2056414 (2005f:60036)
  • 5. K. Helmes, The local law of the iterated logarithm for processes related to Lévy's stochastic area process, Studia Math. 83 (1986), 229-237. MR 850825 (87m:60096)
  • 6. P. Lévy, Wiener's random function, and other Laplacian random functions, Proceedings of the second Berkeley Symposium on Mathematical Statistics and Probability, 1950. MR 0044774 (13:476b)
  • 7. R. Schott, Une Loi du Logarithme itéré pour certaines intégrales stochastiques, Comptes Rendus de l'Académie des Sciences Paris 292 (1981), 295-298. MR 609071 (82c:60142)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60F15, 60G44

Retrieve articles in all journals with MSC (2000): 60F15, 60G44


Additional Information

A. Castellucci
Affiliation: Dip. di Matematica, Università di Pisa, via F. Buonarroti 2, 56100 Pisa, Italy
Email: castellucci@mail.dm.unipi.it

R. Giuliano Antonini
Affiliation: Dip. di Matematica, Università di Pisa, via F. Buonarroti 2, 56100 Pisa, Italy
Email: giuliano@dm.unipi.it

DOI: https://doi.org/10.1090/S0094-9000-07-00680-1
Keywords: Continuous time martingale, generalized sub-Gaussian process, iterated logarithm law, Brownian motion, double stochastic integral, L\'evy area process
Received by editor(s): July 30, 2004
Published electronically: January 17, 2007
Article copyright: © Copyright 2007 American Mathematical Society

American Mathematical Society