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AN ESTIMATE OF THE PROBABILITY
THAT THE QUEUE LENGTH EXCEEDS THE MAXIMUM

FOR A QUEUE THAT IS A GENERALIZED
ORNSTEIN–UHLENBECK STOCHASTIC PROCESS

UDC 519.21

R. E. YAMNENKO

Abstract. We consider the process

A(t) = mt + σ

∫ t

0
X(u) du, t ≥ 0,

describing the queue length, where m and σ are positive constants, X(u) is a ϕ-sub-
Gaussian generalized Ornstein–Uhlenbeck stochastic process, and

ϕ(u) =

{
ur, |u| > 1,

u2, |u| ≤ 1,

r ≥ 2. The classes of ϕ-sub-Gaussian and strictly ϕ-sub-Gaussian stochastic pro-
cesses are wider than the class of Gaussian processes and are of interest for modeling
stochastic processes appearing in queueing theory and in the mathematics of finance.
We obtain an estimate of the probability that the queue length exceeds the maximum
allowed for it, namely,

P

{
sup
t≥0

(A(t) − ct) > x

}
≤ L(γ)xr/(r−1) exp

{
−κ(γ)xr/(2(r−1))

}
,

where c > m is the service intensity, x > 0 is the maximum queue length, and L(γ)
and κ(γ) are some finite constants.

1. Introduction

Consider the process

(1) A(t) = mt + σY (t), t ≥ 0,

describing the length of a queue, where m is the mean amount of work needed to serve the
customers arriving to the system, σ > 0 is some constant, c > m is the service intensity of
the system, and Y (t) is the amount of work needed to serve the customers arriving to the
system in the interval [0, t). If the amount of work needed to serve the arrived customers
exceeds the capacity of the system, then some customers are placed in the waiting list
(queue). If the queue becomes larger than the maximum, then some customers are
excluded from the waiting list; namely, the customers arriving to the system after the
maximum of the queue is exceeded are rejected. Consider the probability that the length
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A(t) of the queue exceeds x > 0:

(2) P

{
sup
t>0

(A(t) − ct) > x

}
.

Estimation of this probability is of special interest in the theory of information transmis-
sion.

Estimates for the probability (2) are known for many classical models. This is the
case, for example, if the input process is Gaussian. It is worth mentioning that the
assumption that the input is Gaussian is applicable in an asymptotic sense only (if
applicable at all). Thus a natural problem is to obtain estimates for the probability
(2) in the case of a wider class of input processes. The classes of ϕ-sub-Gaussian and
strictly ϕ-sub-Gaussian stochastic processes are suitable candidates for this problem. In
this paper, we deal with systems whose input is described by a strictly ϕ-sub-Gaussian
generalized Ornstein–Uhlenbeck stochastic process.

The properties of random variables and stochastic processes of the spaces Subϕ(Ω)
and strictly Subϕ(Ω) (SSubϕ(Ω)) can be found in the book [2] and in the papers [3]–
[6]. Some related problems are discussed in [7, 8, 11] concerning the estimation of the
probability that the trajectories of ϕ-sub-Gaussian processes cross a continuous curve.

The current paper contains three sections. We define ϕ-sub-Gaussian generalized
Ornstein–Uhlenbeck stochastic processes and discuss the main definitions and properties
of random variables and stochastic processes of the spaces Subϕ(Ω) and SSubϕ(Ω) in
Section 2. Section 3 contains the main result on the estimate of the probability that
the queue length exceeds the maximum for models with ϕ-sub-Gaussian generalized
Ornstein–Uhlenbeck input. Also we compare our estimate with the analogous estimate
for the case of the Gaussian Ornstein–Uhlenbeck process.

2. Subϕ(Ω) and SSubϕ(Ω) random variables and stochastic processes

Let {Ω,B, P} be a standard probability space and let T be a space of parameters.

Definition 2.1 ([9]). A function U = {U(x), x ∈ R} is called an Orlicz N -function if U
is a continuous, even, and convex function such that U(0) = 0, U(x) is increasing for
x > 0, U(x)/x → 0 as x → 0, and U(x)/x → ∞ as x → ∞.

Definition 2.2 ([2]). Let ϕ be an Orlicz N -function such that ϕ(x) = cx2 for |x| ≤ x0,
where c > 0 and x0 > 0 are some constants. A centered random variable ξ belongs to
the space Subϕ(Ω) if for any λ ∈ R there exists a constant rξ ≥ 0 such that

E exp{λξ} ≤ exp{ϕ(λrξ)}.

Theorem 2.1 ([2]). The space Subϕ(Ω) is a Banach space with the norm

(3) τϕ(ξ) = sup
λ>0

ϕ(−1)(log E exp{λξ})
λ

,

where ϕ(−1) is the inverse function to ϕ. Moreover

E exp{λξ} ≤ exp{ϕ(λτϕ(ξ))}

for all λ ∈ R, and there exists a constant c > 0 such that

(4)
(
E ξ2
)1/2 ≤ cτϕ(ξ).

Example ([2]). Any centered Gaussian random variable ξ = N(0, σ2) belongs to the
space Subx2/2(Ω) and moreover τ (ξ) = (E ξ2)1/2.
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Definition 2.3. A stochastic process X = (X(t), t ∈ T ) is called ϕ-sub-Gaussian if

X(t) ∈ Subϕ(Ω) for all t ∈ T

and supt∈T τϕ(X(t)) < ∞.

Definition 2.4 ([4]). A family of random variables ∆ of the space Subϕ(Ω) is called a
strictly Subϕ(Ω) family if there exists a constant C∆ > 0 such that

τϕ

(∑
i∈I

λiξi

)
≤ C∆

(
E

(∑
i∈I

λiξi

)2
)1/2

for an arbitrary finite set I such that ξi ∈ ∆, i ∈ I, and for all λi ∈ R.

Theorem 2.2 ([4]). If ∆ is a strictly Subϕ(Ω) family of random variables, then the linear
closure ∆ (in the space L2(Ω)) is also a strictly Subϕ(Ω) family of random variables.

Definition 2.5. The linear closure of families of strictly Subϕ(Ω) random variables forms
the space of strictly Subϕ(Ω) random variables. This space is denoted by SSubϕ(Ω).

Definition 2.6. A stochastic process X = (X(t), t ∈ T ) is called strictly ϕ-sub-Gaussian
if the corresponding family of random variables {X(t), t ∈ T} belongs to the space
SSubϕ(Ω).

Definition 2.7. A stochastic process X = (X(t), t ∈ T ) is called the ϕ-sub-Gaussian
generalized Ornstein–Uhlenbeck process if X is a ϕ-sub-Gaussian process with the co-
variance function

(5) BX(t, s) = e−τ |t−s|, τ > 0.

3. Main results

Consider the process A(t) defined by (1) and assume that the input is described by
the process

(6) Y (t) =
∫ t

0

X(u) du,

where X(u) is a strictly ϕ-sub-Gaussian generalized Ornstein–Uhlenbeck stochastic pro-
cess whose Orlicz N -function is

ϕ(u) =

{
ur, |u| > 1,

u2, |u| ≤ 1,
r ≥ 2.

The covariance function of the process Y (t) is given by

(7) BY (t, s) =
2 min(t, s)

τ
+

1
τ2

(
e−τt + e−τs − e−τ |t−s| − 1

)
.

Put C = (c − m)/(σC∆) and ε = x/(σC∆).
We study the probability that the length A(t) of the queue exceeds the maximum

x > 0. The main result of the current paper reads as follows.

Theorem 3.1. Let Y (t) =
∫ t

0
X(u) du, t ≥ 0, where X(u) is a strictly ϕ-sub-Gaussian

Ornstein–Uhlenbeck stochastic process,

ϕ(u) =

{
ur, |u| > 1,

u2, |u| ≤ 1,
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and r > 2. Then

P

{
sup
t≥0

(A(t) − ct) > x

}

= P

{
sup
t≥0

(Y (t) − Ct) > ε

}
≤ L(γ, ζ, ε)εr/(r−1) exp

{
−κ(γ)εr/(2(r−1))

}(8)

for all γ > 1 and all

(9) ε ≥ 2rγM (γr/2−1 − 1)
r − 2

max
{

C(r−2)/r

τ1/r(γr/2 − 1)
;
(γr/2 − 1) max{2r−1(γ − 1)1−r; 1}

τC(γ − 1)2

}
,

where ζ ∈
(
0, εγ−M−1

)
, M is a positive integer such that

(10) M ≥ 1 +
2

(r − 2) log γ
log
(

2(r − 1)(γ − 1)
r(γr/2 − 1)

)
,

and

L(γ, ζ, ε) = 2e2ζ
r

1−r γ
r(M+1)

1−r
(
K0(γ) + K1(γ)(1 + S1(γ, ε) + S2(γ, ε))

)
< ∞,(11)

κ(γ) =
(

τC

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1) 2(r − 1)(γ

r
2 − γ)

r−2
2(r−1) (γ − 1)

1
r−1

r(γ
r
2−1 − 1)

r−2
2(r−1)

,(12)

K0(γ) = exp
{(

τCζ

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1) (γ

r
2−1 − 1)

r−2
2(r−1)

(γ
r
2 − 1)

r−2
2(r−1)

γ
r

2(r−1)

×
(

γM +
(r − 2)(γ

r
2 − 1)

r(γ
r
2−1 − 1)

+
(r − 2)(γ

r
2 − 1)

4r(γ
r
2−1 − 1)

)}
,

(13)

K1(γ) = exp

{(
τCζ

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1) (γ

r
2−1 − 1)

r−2
2(r−1) (γ − 1)

1
r−1

(γ
r
2 − 1)

r
2(r−1)

×
(

γM +
r − 2

r
+

(r − 2)(γ − 1)
r
2+1

2
r
2 r(γ

r
2−1 − 1)

+
(r − 2)(γ − 1)(γ

r
2 − 1)

4r(γ
r
2−1 − 1)

)}
,

(14)

S1(γ, ε) =
M−1∑
k=1

γ− r(M−k)
r−1 exp

{
−1

2
κ(γ)ε

r
2(r−1)

(
(r − 2) log γ

2(r − 1)

)2

(M − k)2
}

,(15)

S2(γ, ε) =
∞∑

k=M+1

γ
r(k−M)

r−1 exp

{
−1

2
κ(γ)ε

r
2(r−1)

(
r log γ

2(r − 1)

)2

(k − M)2
}

.(16)

Proof. The following result and its proof can be found in [8].

Theorem 3.2. Let

(A(t), t ∈ [a, b]), 0 ≤ a < b < ∞,

be the queue length defined by (1) and let the input be of the form (6). Then

(17) P

{
sup

t∈[a,b]

(A(t) − ct) > x

}
≤ 2e2(b − a)

τ (βp)2
inf

λ>λ0
Z(λ, p, β)
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for all p ∈ (0, 1), β ∈
(
0, ((b − a)/τ )1/2

]
, and x > 0, where

Z(λ, p, β) = exp
{

θ(λ, p) +
pλrβr

(1 − p)r
− λ

(
ε − Cτβ2p2

2(1 − p2)

)}
,(18)

θ(λ, p) = sup
u∈[a,b]

(
λr
(

2u
τ

)r/2

(1 − p)r−1
− λCu

)
,(19)

λ0 = (1 − p) max
{

1
β

;
( τ

2v

)1/2
}

, v =

{
a, if a > 0,

b, if a = 0.
(20)

Remark 3.1 ([8]). If the stochastic process X(u) is strictly ϕ-sub-Gaussian and ϕ(u) = u2,
then λ0 = 0.

Since ϕ(u) is strictly convex, it follows for all λ > λ0 that

(21) θ(λ, p) =

⎧⎨
⎩

λr(2a)r/2

(1−p)r−1τr/2 − λCa, λ ≤ λ∗,
λr(2b)r/2

(1−p)r−1τr/2 − λCb, λ > λ∗,

where

λ∗ = (1 − p)
(

C(b − a)
br/2 − ar/2

)1/(r−1) (τ

2

)r/(2(r−1))

.

Put β = ((b − a)/τ )1/2. Consider the exponential part of estimate (17). Then

inf
λ>λ0

Z(λ, p) ≤ Z(λ∗, p)

= exp
{

(λ∗)r

(
(2b)

r
2

τ
r
2 (1 − p)r−1

+
(b − a)

r
2 p

τ
r
2 (1 − pr)

)
− λ∗

(
Cb + ε − C(b − a)p2

2(1 − p2)

)}

= exp

{
(1 − p)

(τ

2

) r
2(r−1)

(
C(b − a)
b

r
2 − a

r
2

) 1
r−1

×
((τ

2

) r
2 C(b − a)

b
r
2 − a

r
2

(
(2b)

r
2

τ
r
2

+
(b − a)

r
2 p

τ
r
2 (1 − p)

)
− Cb − ε +

C(b − a)p2

2(1 − p2)

)}

= exp

{
−(1 − p)

(τ

2

) r
2(r−1)

(
C(b − a)
b

r
2 − a

r
2

) 1
r−1

×
(

ε + Cab
b

r
2−1 − a

r
2−1

b
r
2 − a

r
2

+
p

1 − p

(
C(b − a)

r
2+1

2
r
2 (b

r
2 − a

r
2 )

+
C(b − a)p
2(1 + p)

))}

= exp

{
−
(τ

2

) r
2(r−1)

(
C(b − a)
b

r
2 − a

r
2

) 1
r−1
(

ε + Cab
b

r
2−1 − a

r
2−1

b
r
2 − a

r
2

)}

× exp

{
p
(τ

2

) r
2(r−1)

(
C(b − a)
b

r
2 − a

r
2

) 1
r−1

×
(

ε + Cab
b

r
2−1 − a

r
2−1

b
r
2 − a

r
2

− C(b − a)
r
2+1

2
r
2 (b

r
2 − a

r
2 )

+
C(b − a)p
2(1 + p)

)}

= Wa,b(ε)Ka,b(p, ε).

(22)

Consider the following partition:

[0,∞) =
∞⋃

k=0

[ak, bk],
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where a0 = 0, b0 = α, bk = ak+1 = γkα for k ≥ 1, γ > 1, and α > 0 is a constant to be
specified later. Then

Wk(γ, ε) = Wak,bk
(ε)

= exp

{
−
(τ

2

) r
2(r−1)

(
C(γ − 1)
γr/2 − 1

) 1
r−1

α
1−r/2

r−1 γ
1−r/2

r−1 (k−1)

×
(

ε + Cαγk γr/2−1 − 1
γr/2 − 1

)}(23)

for all k ≥ 1. We find the interval where Wk(γ, ε) attains its maximum. The function

(24) J(k) = γ
1−r/2

q−1 (k−1)

(
ε + Cγkα

γr/2−1 − 1
γr/2 − 1

)

is continuous with respect to the argument k. Then

dJ(k)
dk

= γ
1−r/2

r−1 (k−1) log γ

(
1 − r

2

r − 1

(
ε +

Cγkα(γr/2−1 − 1)
γr/2 − 1

)
+

Cαγk(γr/2−1 − 1)
γr/2 − 1

)

= γ
1−r/2

r−1 (k−1) log γ

(
ε(1 − r

2 )
r − 1

+
Cγkα(γr/2−1 − 1) r

2

(γr/2 − 1)(r − 1)

)

and

(25)
dJ(k)

dk
= 0 ⇔ α =

εγ−k

C

r − 2
r

γr/2 − 1
γr/2−1 − 1

.

Choose α such that Wk(γ, ε) attains its maximum for k = M where M ≥ 1. Then

(26) a =
εγ−M

C

r − 2
r

γr/2 − 1
γr/2−1 − 1

.

Substituting α defined in (26) into (23) we get

W
(M)
k (γ, ε) = exp

{
−
(

τCε

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1)

γ
r−2

2(r−1) (M−k+1)

× (γr/2−1 − 1)
r−2

2(r−1) (γ − 1)
1

r−1

(γr/2 − 1)
r

2(r−1)

(
1 +

r − 2
r

γk−M

)}(27)

for all k ≥ 1, and

(28) W
(M)
0 (γ, ε) = exp

{
−
(

τCε

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1)

γ
(r−2)M
2(r−1)

(
γ

r
2−1 − 1
γ

r
2 − 1

) r−2
2(r−1)

}
.

Put

(29) W (γ, ε) = W
(M)
M (γ, ε) = exp

{
−κ(γ)ε

r
2(r−1)

}
,

where

(30) κ(γ) =
(

τC

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1) 2(r − 1)(γr/2 − γ)

r−2
2(r−1) (γ − 1)

1
r−1

r(γr/2−1 − 1)
r−2

2(r−1)

.
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It is obvious that W (γ, ε) ≥ W
(M)
0 (γ, ε) for

(31) M ≥ 1 +
2

(r − 2) log γ
log
(

2(r − 1)(γ − 1)
r(γr/2 − 1)

)
.

Consider the ratio

W
(M)
k (γ, ε)
W (γ, ε)

= exp

{
−
(

τCε

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1)

× (γr/2 − γ)
r−2

2(r−1) (γ − 1)
1

r−1

(γr/2 − 1)
r

2(r−1)

2(r − 1)
r

×
(

r

2(r − 1)
γ(M−k) r−2

2(r−1) +
r − 2

2(r − 1)
γ(k−M) r

2(r−1) − 1
)}

= W (γ, ε)S
(M)
k (γ),

(32)

where

(33) S
(M)
k (γ) =

r

2(r − 1)
γ

r−2
2(r−1) (M−k) +

r − 2
2(r − 1)

γ
r

2(r−1) (k−M) − 1.

It is easy to see that S
(M)
k (γ) > 0 for all γ > 1 and k ≥ 1.

Using the known inequalities ex ≥ 1 + x + x2

2 and e−x ≥ 1 − x for x ≥ 0, we obtain

S
(M)
k (γ) ≥ Sk(γ) =

1
2

(
(r − 2) log γ

2(r − 1)

)2

(M − k)2, k < M,(34)

S
(M)
k (γ) ≥ Sk(γ) =

1
2

(
r log γ

2(r − 1)

)2

(k − M)2, k > M.(35)

Consider the following sums:

S1(γ, ε) =
M−1∑
k=1

γ− rk
r−1 W (γ, ε)Sk(γ),(36)

S2(γ, ε) =
∞∑

k=M+1

γ
rk

r−1 W (γ, ε)Sk(γ).(37)

Since W
(M)
k (γ, ε) ≤ W (γ, ε) for all k ≥ 0, relations (32)–(35) imply that S1(γ, ε) < ∞

and S2(γ, ε) < ∞ for all γ > 1.
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Consider the other factor on the right hand side of (22). Substituting α defined by (26)
we get

Kk(γ, p, ε) = Kak,bk
(γ, p, ε)

= exp

{
p
(τ

2

) r
2(r−1)

(
C(bk − ak)

b
r
2
k − a

r
2
k

) 1
r−1

×
(

ε + Cakbk
b

r
2−1

k − a
r
2−1

k

b
r
2
k − a

r
2
k

+
C(bk − ak)

r
2 +1

2
r
2 (b

r
2
k − a

r
2
k )

+
C(bk − ak)p

2(1 + p)

)}

= exp

{
pε

r
2(r−1)

(
τC

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1)

× (γ
r
2−1 − 1)

r−2
2(r−1) (γ − 1)

1
r−1

(γ
r
2 − 1)

r
2(r−1) γ

(r−2)(k−M−1)
2(r−1)

×
(

1 +
r − 2

r
γk−M +

(r − 2)(γ − 1)
r
2+1γk−M−1

2
r
2 r(γ

r
2−1 − 1)

+
(r − 2)(γ − 1)(γ

r
2 − 1)γk−M−1p

2r(γ
r
2−1 − 1)(1 + p)

)}

= exp

{
pε

r
2(r−1)

(
τC

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1)

× (γ
r
2−1 − 1)

r−2
2(r−1) (γ − 1)

1
r−1

(γ
r
2 − 1)

r
2(r−1)

×
(

γ
(r−2)(M−k+1)

2(r−1) +
r − 2

r
γ

r(k−M−1)
2(r−1)

+
(r − 2)(γ − 1)

r
2+1

2
r
2 r(γ

r
2−1 − 1)

γ
r(k−M−1)

2(r−1)

+
(r − 2)(γ − 1)(γ

r
2 − 1)p

2r(γ
r
2−1 − 1)(1 + p)

γ
r(k−M−1)

2(r−1)

)}

(38)

for all k ≥ 1, and

K0(γ, p, ε) = Ka0,b0(γ, p, ε)

= exp

{
pε

r
2(r−1)

(
τC

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1) (γ

r
2−1 − 1)

r−2
2(r−1)

(γ
r
2 − 1)

r−2
2(r−1)

γ
(r−2)M
2(r−1)

×
(

1 +
(r − 2)(γ

r
2 − 1)

r(γ
r
2−1 − 1)γM

+
(r − 2)(γ

r
2 − 1)p

2r(γ
r
2−1 − 1)(1 + p)γM

)}(39)

for k = 0. For any interval [ak, bk], k ≥ 0, put

(40) p = pk =
ζ

r
2(r−1)

ε
r

2(r−1) γ
r(k−M−1)

2(r−1)

,

where ζ is some constant such that pk < 1 for all intervals, that is,

ζ ∈
(
0, ε/γM+1

)
.
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Since p/(1 + p) < 1
2 for all p ∈ (0, 1), we obtain

Kk(γ, pk, ε)

= exp

{(
τCζ

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1) (γ

r
2−1 − 1)

r−2
2(r−1) (γ − 1)

1
r−1

(γ
r
2 − 1)

r
2(r−1)

×
(

γM−k+1 +
r − 2

r
+

(r − 2)(γ − 1)
r
2 +1

2
r
2 r(γ

r
2−1 − 1)

+
(r − 2)(γ − 1)(γ

r
2 − 1)

4r(γ
r
2−1 − 1)

)}
.

(41)

It is obvious that Kk(γ, pk, ε) ≤ K1(γ, p1, ε) = K1(γ) for all k ≥ 1. Similarly

K0(γ, p0, ε) = K0(γ)

= exp

{(
τCζ

2

) r
2(r−1)

(
r

r − 2

) r−2
2(r−1) (γ

r
2−1 − 1)

r−2
2(r−1)

(γ
r
2 − 1)

r−2
2(r−1)

γ
r

2(r−1)

×
(

γM +
(r − 2)(γ

r
2 − 1)

r(γ
r
2−1 − 1)

+
(r − 2)(γ

r
2 − 1)

4r(γ
r
2−1 − 1)

)}
.

(42)

Condition (20) holds if λ∗ > λ0 for all intervals; that is,

(43) (1 − p)

(
C(bk − ak)

b
r/2
k − a

r/2
k

) 1
r−1 (τ

2

) r
2(r−1) ≥ (1 − p) max

{
τ1/2

(bk − ak)1/2
;
( τ

2v

)1/2
}

,

where

v =

{
α, for k = 0,

ak, for k ≥ 1.

It is easy to check that condition (43) is equivalent to

(44) ε ≥ 2rC(r−2)/rγM (γr/2−1 − 1)
τ1/r(r − 2)(γr/2 − 1)

for the interval [a0, b0] = [0, α]. It follows from (43) that

(
C(γ − 1)(αγk−1)1−

r
2

γ
r
2 − 1

) 1
r−1 (τ

2

) r
2(r−1) ≥ τ1/2 max

{
((γ − 1)αγk−1)−

1
2 ; (2αγk−1)−

1
2

}
,

(
C(γ − 1)
γ

r
2 − 1

) 1
r−1 τ

1
2(r−1)

2
r

2(r−1)
(αγk−1)

1
2(r−1) ≥ max

{
(γ − 1)−

1
2 ; 2−

1
2

}
(45)

for the intervals [ak, bk] = [αγk−1, αγk], k ≥ 1. If inequality (45) holds for k = 1, it holds
for k > 1, too. Thus (26) implies that

(46) ε ≥
2rrγM

(
γr/2−1 − 1

) (
γr/2 − 1

)
max

{
(γ − 1)1−r; 21−r

}
τC(r − 2)(γ − 1)2

.
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Inequality (9) follows from (44) and (46). Therefore

P

{
sup
t≥0

(A(t) − ct) > x

}
= P

{
sup
t≥0

(Y (t) − Ct) > ε

}

≤
∑
k≥0

P

{
sup

t∈[ak,bk]

(Y (t) − Ct) > ε

}
=
∑
k≥0

2e2

p2
k

W
(M)
k (γ, ε)Kk(γ, pk, ε)

≤ ε
r

r−1 2e2ζ
−r

r−1

(
γ

−r(M+1)
r−1 W

(M)
0 (γ, ε)K0(γ)

+
M−1∑
k=1

γ
r(k−M−1)

r−1 W
(M)
k (γ, ε)K1(γ)

+ W (γ, ε)K1(γ) +
∞∑

k=M+1

γ
r(k−M−1)

r−1 W
(M)
k (γ, ε)K1(γ)

)

≤ ε
r

r−1 2e2ζ
r

1−r γ
r(M+1)

1−r W (γ, ε)

×
(

K0(γ) + K1(γ)

(
M−1∑
k=1

γ
rk

r−1 W (γ, ε)Sk(γ) + 1 +
∞∑

k=M+1

γ
rk

r−1 W (γ, ε)Sk(γ)

))

= ε
r

r−1 W (γ, ε)2e2ζ
r

1−r γ
r(M+1)

1−r
(
K0(γ) + K1(γ)(1 + S1(γ, ε) + S2(γ, ε))

)
. �

(47)

Theorem 3.3. Let Y (t) =
∫ t

0
X(u) du, t ≥ 0, where X(u) is a strictly ϕ-sub-Gaussian

generalized Ornstein–Uhlenbeck stochastic process with parameter τ > 0 and ϕ(u) = u2.
Then

(48) P

{
sup
t≥0

(Y (t) − Ct) > ε

}
≤ 2e2ε2

ζ2
exp
{
−τCε

2

}(
K̃0(ζ, γ) + K̃1(ζ, γ)S(γ, ε)

)
for all γ > 1, ε > 0, and ζ ∈ (0, εγ−1), where

K̃0(ζ, γ) = exp
{

3ζτCγ

8

}
,(49)

K̃1(ζ, γ) = exp
{

ζτ

8
(
χ{γ<3}(6C + γ − 1) + χ{γ≥3}((C + 1)(γ − 1) + 4C)

)}
,(50)

S(γ, ε) =
∑
k≥1

γ2(k−1) exp
{
−τCε

8
(
γk−1 − 2 + γ1−k

)}
< ∞.(51)

Proof. The bound

(52) P

{
sup

t∈[a,b]

(A(t) − ct) > x

}
≤ 2e2

p2
inf
λ>0

Z(λ, p),

follows from Theorem 3.2 with β = ((b − a)/τ )1/2, where

Z(λ, p) = exp
{

θ(λ, p) +
λ2p(b − a)
τ (1 − p)2

− λ

(
ε − Cτ (b − a)p2

2(1 − p2)

)}
,(53)

θ(λ, p) = sup
u∈[a,b]

(
λ22u

τ (1 − p)
− λCu

)
.(54)

It is obvious that θ(λ, p) = λ22a/(τ (1 − p)) − λCa for λ ≤ λ∗ = (1 − p)τC/2.
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The function Z(λ, p) attains its minimum at the point

λ̃ =
Ca + ε − Cp2(b−a)

2(1−p2)

2
(

2a
τ(1−p) + p(b−a)

τ(1−p)2

) ,

whence we obtain

inf
λ>0

Z(λ, p) = exp

⎧⎪⎨
⎪⎩−

(
Ca + ε − Cp2(b−a)

2(1−p2)

)2

4
(

2a
τ(1−p) + p(b−a)

τ(1−p)2

)
⎫⎪⎬
⎪⎭

= exp

⎧⎨
⎩− τ (Ca + ε)2

4
(
2a + p(b−a)

1−p

)
⎫⎬
⎭

× exp

⎧⎨
⎩pτ

(Ca + ε)2 + p(Ca+ε)(b−a)
1+p − C2p3(b−a)2

4(1−p2)(1+p)

4
(
2a + p(b−a)

1−p

)
⎫⎬
⎭

≤ exp
{
−τ (Ca + ε)2

8a

}

× exp

⎧⎨
⎩pτ

⎛
⎝ (Ca + ε)2(b − a)

8a(1 − p)
(
2a + p(b−a)

1−p

) +
(Ca + ε)2 + (Ca+ε)(b−a)

2

4
(
2a + p(b−a)

1−p

)
⎞
⎠
⎫⎬
⎭

= Γa,b(ε)Ka,b(p, ε)

(55)

if λ̃ ≤ λ∗ or, equivalently, if

(56) ε ≤ Ca +
C(b − a)p

1 − p
+

Cp2(b − a)
2(1 − p2)

.

Since Γa,b(ε) attains the maximum at the point a = ε/C, we consider the partition
[0,∞) =

⋃∞
k=0[ak, bk], where [a0, b0] = [0, ε/C], [ak, bk] = [εγk−1/C, εγk/C], k ≥ 1, and

γ > 1. Condition (56) holds for any interval of this partition. Estimate (22) holds for
k = 0:

inf
λ>0

Z(λ, p) ≤ Z(λ∗, p)

= exp
{
−τCε

2

}
exp
{

pτC

2

(
ε − C(b0 − a0)

2
+

C(b0 − a0)p
2(1 + p)

)}

= exp
{
−τCε

2

}
exp
{

pτCε

4

(
1 +

p

1 + p

)}
≤ exp

{
−τCε

2

}
exp
{

3pτCε

8

}
= Γ(ε)K0(p, ε).

(57)

Put
Γk(γ, ε) = Γak,bk

(ε).
Then

Γk(γ, ε)
Γ(ε)

= exp
{
−τCε

2

(
(γk−1 + 1)2

4γk−1
− 1
)}

= exp
{
−τCε

2
(γk−1 − 1)2

4γk−1

}

= exp
{
−τCε

8
(
γk−1 − 2 + γ1−k

)}
,

(58)

S(γ, ε) =
∑
k≥1

γ2(k−1) exp
{
−τCε

8
(
γk−1 − 2 + γ1−k

)}
< ∞(59)
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for k ≥ 1 and all γ > 1 and ε > 0. Further,
Kk(γ, p, ε) = Kak,bk

(p, ε)

= exp

{
pετ

8γk−1

(
C(γk−1 + 1)2(γ − 1)
2(1 − p) + p(γ − 1)

+
2C(γk−1 + 1)2 + (γk−1 + 1)γk−1(γ − 1)

2 + p(γ−1)
1−p

)}
.

(60)

Let
p = pk = ζ/

(
εγk−1

)
< 1

for all k ≥ 0, that is, ζ ∈ (0, εγ−1). Then

Kk(γ, pk, ε)

≤ exp

{
ζτ

8

(
C(γ1−k + 1)(γ − 1)

2 + ζ(γ−3)
εγk−1

+
2C(γ1−k + 1)2 + (γ1−k + 1)(γ − 1)

2

)}

≤ exp

{
ζτ

8

(
2C(γ − 1)

2 + ζ(γ−3)
εγk−1

+
8C + 2(γ − 1)

2

)}
.

(61)

Thus

(62) Kk(γ, pk, ε) ≤ exp
{

ζτ

8
(
(C + 1)(γ − 1) + 4C

)}
for γ ≥ 3. If 1 < γ < 3, then ζ(3 − γ)(εγk−1) < 3 − γ and

Kk(γ, pk, ε) ≤ exp
{

ζτ

8
(6C + γ − 1)

}
.(63)

Put

(64) K̃1(ζ, γ) = exp
{

ζτ

8
(
χ{γ<3}(6C + γ − 1) + χ{γ≥3}((C + 1)(γ − 1) + 4C)

)}
.

Now

K0(p0, ε) ≤ exp
{

3ζτCγ

8

}
= K̃0(ζ, γ),(65)

and therefore

P

{
sup
t>0

(Y (t) − Ct) > ε

}
≤
∑
k≥0

P

{
sup

t∈[ak,bk]

(Y (t) − Ct) > ε

}

=
∑
k≥0

2e2ε2γ2(k−1)

ζ2
Γk(γ, ε)Kk(γ, pk, ε)

=
2e2ε2

ζ2
Γ(ε)

⎛
⎝K0(p0, ε) +

∑
k≥1

γ2(k−1) Γk(γ, ε)
Γ(ε)

Kk(γ, pk, ε)

⎞
⎠

≤ 2e2ε2

ζ2
Γ(ε)

(
K̃0(ζ, γ) + K̃1(ζ, γ)S(γ, ε)

)
. �

(66)

Remark 3.2. A similar problem is considered for the Gaussian Ornstein–Uhlenbeck sto-
chastic process in a number of papers (see, for example, [1, 10]). In particular,

(67) P

{
sup
t>0

(Y (t) − Ct) > ε

}
∼ exp {−I(ε)}
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for the model studied in the current paper with τ = 1 and sufficiently large ε, where

(68)
I(ε) = inf

t>0

(ε + Ct)2

2σ2
t

,

σ2
t = 2

(
t − 1 + e−t

)
.

It is obvious that the solution of problem (68) is I(ε) = κε, where κ > 0 is a constant.
Moreover the estimate obtained in Theorem 3.3 implies that κ > C/2 for a ϕ-sub-
Gaussian Ornstein–Uhlenbeck stochastic process with ϕ(u) = u2, since

I(ε) ≥ inf
t>0

(ε + Ct)2

4t
= Cε.

This means that our result obtained for the class of ϕ-sub-Gaussian stochastic processes
(including the class of Gaussian stochastic processes) coincides, up to a multiplicative
factor, with the corresponding result for the Gaussian case.

4. Concluding remarks

A model for the queueing system is considered in the paper. The queue length is
continuous and the input is a strictly ϕ-sub-Gaussian generalized Ornstein–Uhlenbeck
stochastic process defined on the positive semiaxis. The classes of ϕ-sub-Gaussian and
strictly ϕ-sub-Gaussian stochastic processes include the class of Gaussian processes and
can be used when modeling stochastic processes. We obtained an estimate for the prob-
ability that the queue length exceeds the maximum for this model. Similar results can
be obtained for other types of stochastic processes.
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