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THE STABILITY OF TRANSIENT
QUASI-HOMOGENEOUS MARKOV SEMIGROUPS

AND AN ESTIMATE OF THE RUIN PROBABILITY
UDC 519.21

M. V. KARTASHOV

Abstract. A time nonhomogeneous semigroup of Markov operators in a Banach
space is called quasi-homogeneous if its infinitesimal operator has a dense domain
and can be represented as the sum of the infinitesimal operator of a homogeneous
semigroup and a bounded operator function.

We obtain estimates of the strong stability of a nonhomogeneous semigroup for
the case where the underlying homogeneous semigroup is uniformly transient.

1. Introduction

The stability of perturbed homogeneous semigroups of operators is studied in the
monograph [1] for discrete time. The foundations of the theory of time nonhomogeneous
Markov processes are created in the books by E. B. Dynkin [2] and I. I. Gikhman and
A. V. Skorokhod [3]. The general theory of perturbations of operators can be found
in [4].

In this paper, we develop an approach that originated in [5]. This approach is used
in papers [5, 6] to estimate the stability of nonhomogeneous semigroups for which the
underlying homogeneous semigroup is uniformly ergodic. In what follows we consider
the transient case and solve the problem of stability.

As an example we apply the general results to estimate the ruin probability for a risk
process with a time nonhomogeneous Poisson flow of insurance claims. Another approach
to this problem for nonhomogeneous risk processes is described in [7].

2. Main definitions

1. Let (E, Ξ) be a measurable space. Denote by fΞ and mΞ the classes of all measur-
able functions and all finite charges on (E, Ξ), respectively.

Assume that ℵ ⊂ mΞ is a Banach subspace of the space mΞ equipped with the
norm ‖ · ‖.

Consider the space � ⊂ fΞ of functions, the Banach space that is dual to ℵ and
equipped with the norm

‖f‖ = sup(|µf | , ‖µ‖ ≤ 1, µ ∈ ℵ).
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The dual linear form is defined by

µf =
∫

E

f(x) µ(dx), µ ∈ ℵ, f ∈ �,

in this case. Note also that

(1) ‖µ‖ = sup(|µf |, ‖f‖ ≤ 1, f ∈ �).

Examples of the spaces and their dual spaces are given in [1, Chapter 1].
Every transition kernel Q = (Q(x, B), x ∈ E, B ∈ Ξ) on (E, Ξ) generates [5] the linear

mappings

µQ(B) =
∫

E

µ(dx)Q(x, B) : mΞ → mΞ,(2)

Qf(x) =
∫

E

Q(x, dy)f(y) : fΞ → fΞ.(3)

The linear subclasses of these mappings equipped with finite norms

(4) ‖Q‖ = sup(‖µQ‖ , ‖µ‖ ≤ 1) = sup(‖Qf‖ , ‖f‖ ≤ 1) < ∞
are Banach spaces of linear bounded operators denoted by L(ℵ) and L(�), respectively.
The product of the corresponding operators is generated by the kernel

(5) PQ(x, B) =
∫

E

P (x, dy)Q(y, B).

2. Let (P (s, x, t, B), x ∈ E, B ∈ Ξ, 0 ≤ s ≤ t) be a Markov transition function [4,
Chapter 3] understood in the wide sense. According to (2) and (3), one can associate
the following mappings with this function:

Pst : mΞ → mΞ, Pst : fΞ → fΞ.

If the mappings are bounded, then they generate a semigroup with respect to the mul-
tiplication [2, 3, 6]. The mappings are bounded if ℵ and � are the spaces of all bounded
charges equipped with the full variation norm and all bounded measurable functions
equipped with the uniform norm, respectively.

3. A family of operators (Pst, 0 ≤ s ≤ t < ∞) ⊂ L(�) is called a bounded semigroup
in L(�) if

(P) PsuPut = Pst, 0 ≤ s ≤ u ≤ t, sup
0≤s≤t

‖Pst‖ < ∞.

A semigroup of operators (Qst, 0 ≤ s ≤ t < ∞) is time homogeneous if

(6) Qst = Qt−s, 0 ≤ s ≤ t, QsQt−s = Qt.

If the limit

(7) lim
u↑s,v↓s

(v − u)−1(Puvf − f) ≡ Asf, s ≥ 0,

exists in the norm of the space �, then As is called the infinitesimal operator of the
nonhomogeneous semigroup (Pst).

Definition. A bounded semigroup (Pst, 0 ≤ s ≤ t < ∞) is called quasi-homogeneous if
there exists a nontrivial bounded homogeneous semigroup (Qt−s, 0 ≤ s ≤ t < ∞) with
the infinitesimal operator A defined on a dense subspace �0 ⊂ �, namely if

(A) for all f ∈ �0, there exists lim
h→0

h−1(Qhf − f) ≡ Af

and if, for some bounded family of operators (Ds, 0 ≤ s < ∞) ⊂ L(�), the infinitesimal
operator As of the semigroup (Pst) is given by

(AD) As = A + Ds on �0.
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Remark. Condition (AD) is equivalent to

(D)
for all s ≥ 0 and for all f ∈ �0

the limit lim
u↑s,v↓s

(v − u)−1(Puvf − Qv−uf) ≡ Dsf ∈ � exists.

This follows directly from the definition of the infinitesimal operator and from the
boundedness of Ds (see [5]).

The semigroup (Qt−s) is called the underlying semigroup for (Pst).
The condition for the boundedness of the perturbation in the above definition can be

written as follows:

(T) sup
s≤t

‖Ds‖ < ∞ for all t > 0.

4. A semigroup (Pst) is called uniformly transient (in the space �) if

(8) ‖Pst‖ → 0, t → ∞, for all s ≥ 0.

If a semigroup is homogeneous, that is, Pst = Qt−s, then the rate of convergence is
geometrical:

(9) there exists ρ < 1 such that ‖Qt‖ = O(ρt), t → ∞.

5. If a semigroup is quasi-homogeneous and uniformly transient, then

qT (β) ≡ sup
t<T

exp(βt) ‖Qt‖ ,(Q)

εT (β) ≡ sup
t<T

∫ t

0

exp(β(t − u)) ‖DuQt−u‖ du,(10)

εT ≡
∫ T

0

‖Du‖ du(11)

are finite for some T ≤ ∞ and β > 0.
The index εT (β) can sometimes be not easy to evaluate. In this case, one can use the

following upper bound:

(12) εT (β) ≤ εT qT (β).

Moreover, the measurability is necessary to construct the integral on the right hand
side of (10). If this is not the case, then the index

(13) εT (β) = sup
t<T

sup
f∈�0

∫ t

0

exp(β(t − u))
‖DuQt−uf‖

‖f‖ du

should be used instead of εT (β) defined by (10). Indeed, the function ‖DuQt−uf‖ in
(13) is Borel for all f ∈ �0, since it is the limit of continuous functions,

h−1 ‖(Pu−h,u − Qh)Qt−uf‖ as h ↓ 0

(see [5]).
Note that inequality (12) is an obvious corollary of the inequality for the norm of the

product of operators. The inequality between indices defined by (10) and (13) follows
from the definition of the norm.

Throughout this paper, the integrals of operator-valued bounded functions are under-
stood in the weak sense as integrals defined by their action for the elements µ ∈ ℵ and
f ∈ �:

µ

(∫ t

s

Du du

)
f =

∫ t

s

µDuf du.
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3. Main results

The following result contains a qualitative estimate of the stability of transient quasi-
homogeneous semigroups.

Theorem 1. Let (Pst, 0 ≤ s ≤ t < T ) be a quasi-homogeneous bounded semigroup and
let T ≤ ∞. Assume that the underlying homogeneous semigroup (Qt−s) is uniformly
transient in the sense that (9) holds. If the perturbation (Ds) is such that

(14) εT (β) < 1

for some β ≥ 0, then the semigroup (Pst) also is uniformly transient and moreover

(15) sup
0≤s≤t<T

exp(β(t − s)) ‖Ps,t − Qt−s‖ ≤ εT (β)
qT (β)

1 − εT (β)
.

In particular, inequality (15) implies the bounds for the stability for functions Pst1(x)
viewed as survival probabilities on the interval from s to t for terminating semigroups.
Here and in what follows, 1 = 1(x), x ∈ E, stands for the identity mapping.

However there are sharper inequalities in this case. To state these results we note that
Pst1(x) are not increasing in t. Therefore the limits

(16) ps(x) = lim
t→∞

Pst1(x), p(x) = lim
t→∞

Qt−s1(x)

exist.
The functions Pst1(x) are not increasing in t in view of the semigroup and Markov

properties:

Pst1(x) − Psu1(x) = Pst(1 − Ptu1)(x) ≥ 0 for all s ≤ t ≤ u.

Theorem 2. Let (Pst, 0 ≤ s ≤ t < ∞) be a quasi-homogeneous bounded semigroup.
Then the limit functions (16) are such that

(17) ‖ps − p‖ ≤
∫ ∞

s

‖Psu‖ ‖Dup‖ du.

As an example we consider a risk process (Xt, t ≥ 0) that is a right continuous solution
of the system

(18)
dXt = c dt − dZt,

X0 = x > 0,

where c > 0 is the premium intensity,

Zt =
ν(t)∑
k=1

ξk,

ξn are jointly independent identically distributed random variables representing the
amounts of insurance payments, and ν(t) is an independent of {ξn} and time nonho-
mogeneous Poisson process with intensity λt; that is,

P (ν(t) − ν(s) = n) =
(
Λt

s

)n exp
(
−Λt

s

)
/n!, s < t,

Λt
s =

∫ t

s

λu du.(19)

We assume that λt is a nonnegative measurable function on R+ that is bounded on
every finite interval.

We also assume that the process (Xt) terminates at the moment τx when it enters the
set (−∞, 0) (we say that τx is the ruin moment, x = X0):

(20) τx = inf(t > 0: Xt /∈ [0,∞)).
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The infinitesimal operator of such a process is

(21) Atf(x) = cf ′(x) + λt

∫ x

−∞
f(x − y) dG(y) − λtf(x), x ∈ R+.

The operator At is defined on C1(R+) ∩ Cb(R+). Here and in what follows the common
distribution function and moment generating function of the random variables ξn are

(22) G(x) = P(ξ1 < x), ĝ(t) = E exp(tξ1).

We further assume the Cramér condition:

(23) there exists α > 0 such that ĝ(α) < ∞.

Along with (Xt, t ≥ 0) consider a similar time homogeneous process (Xt, t ≥ 0) having
the same premium intensity, insurance payments, and initial state x. The difference is
that Xt has a constant claim intensity λ(t) ≡ λ. This means that the corresponding
Poisson process ν(t) is homogeneous and has intensity λ. The parameter λ > 0 used in
the following inequalities is arbitrary, but the following nondegeneracy condition holds:

(24) λ E ξ1 < c.

One can define the same characteristics for the homogeneous process (Xt) as those
for (Xt). The characteristics of (Xt) are denoted with the same symbol as in the case
of (Xt) but with the bar.

The symbol Psx stands for the conditional probability given X(s) = x.

Theorem 3. Let (Xt, 0 ≤ t < T ) be a nonhomogeneous risk process whose infinitesimal
operator is given by (21) and let (Xt) be the corresponding homogeneous process with
intensity λ for which (24) holds.

If the constant α ≥ 0 is such that

(25) β ≡ αc − λ(ĝ(α) − 1) ≥ 0,

then

(26)

Eα ≡ sup
0≤s≤t≤T

sup
x≥0,B∈Ξ

eαx+β(t−s)
∣∣∣Esx e−αXt1{Xt∈B} − Esx e−αXt1{Xt∈B}

∣∣∣
≤ ĝ(α)

∫ T

0

|λu − λ| exp
(

(αc − β)
∫ u

0

(λv − λ)/λ dv

)
du.

Remark. Inequality (25) holds if and only if 0 ≤ α ≤ αL, where the Lundberg constant
αL > 0 is uniquely defined under conditions (24) and (23) by

(27) αL = sup
(
α > 0: αc − λ(ĝ(α) − 1) ≥ 0

)
.

If ĝ(αL) < ∞, then the Lundberg constant is a unique solution of the equation

(28) αLc − λ
(
ĝ(αL) − 1

)
= 0.

Indeed, if ĝ(αL) < ∞, then the supremum on the right hand side of (27) is attained
at the point αL, since ĝ(α) is continuous for α ≤ αL. This implies (28). Further, the
right hand side of (25) is a convex function and equals zero for α ∈ {0, αL}. This proves
the first statement of this remark.

Example 1. If the assumptions of Theorem 3 hold, then

(29) sup
0≤s≤t≤T

sup
x≥0,B∈Ξ

∣∣Psx(Xt ∈ B) − Psx(Xt ∈ B)
∣∣ ≤ ∫ T

0

|λu − λ| du.

It is necessary to set α = 0 in Theorem 3 to check (29).
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Theorem 4. Let (Xt, t ≥ 0) be a nonhomogeneous risk process whose infinitesimal
operator is given by (21) and let (Xt) be the corresponding homogeneous process whose
intensity λ is such that the nondegeneracy condition (24) holds.

If inequality (25) holds for the constant α ≥ 0, then

(30)

eα ≡ sup
x≥0

exp(αx) |P0x(τx < ∞) − P0x(τx < ∞)|

≤ ĝ(α)
∫ ∞

0

|λu − λ| exp
(
−βu + (αc − β)

∫ u

0

(λv − λ)/λ dv

)
du.

Example 2. If α = 0, then β = 0 and inequality (30) implies

(31) sup
x≥0

|P0x(τx < ∞) − P0x(τx < ∞)| ≤
∫ ∞

0

|λu − λ| du.

Example 3. Let λu = λ + ε sin u, 0 ≤ ε < λ. Then

(32) eα ≤ εĝ(α) exp(2ε(αc − β)/λ)/β

for all α ∈ (0, αL), since

eα ≤ ĝ(α)
∫ ∞

0

ε |sin u| exp(−βu + (αc − β)(1 − cos u)/λ) du

≤ ĝ(α)
∫ ∞

0

ε exp(−βu + (αc − β)2/λ) du

in view of inequality (30).

Example 4. Let λu = λ − ε exp(−u), 0 ≤ ε < λ. Then

(33) eα ≤ εĝ(α)/(1 + β)

for all α ∈ [0, αL], since

eα ≤ ĝ(α)
∫ ∞

0

εe−u exp(−βu − (αc − β)(1 − e−u)/λ) du

≤ ĝ(α)
∫ ∞

0

ε exp(−u − βu) du = εĝ(α)/(1 + β)

according to inequality (30).

Example 5. Let α = αL > 0, ĝ(α) < ∞, and let the Lundberg constant for the
homogeneous process be equal to

(34) K(α) ≡ lim
x→∞

exp(αx)P0x(τx < ∞).

If

(35) δ ≡
∫ ∞

0

|λu − λ| du < ∞,

then

(36)
∣∣∣∣lim(lim)

x→∞
exp(αx)P0x(τx < ∞) − K(α)

∣∣∣∣ ≤ ĝ(α)
λ

αc

[
exp

(
δ
αc

λ

)
− 1

]
and

(37) the limit lim
x→∞

x−1 ln P0x(τx = ∞) = αL exists

for all sufficiently small δ.
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For the proof of (36) and (37), we use the remark to Theorem 3 implying for α = αL

that inequality (25) becomes the equality (28) in this case, that is, β = 0. Changing the
function λv − λ in (30) by its absolute value we get the inequality

eα ≤ ĝ(α)
∫ ∞

0

|λu − λ| exp
(

αc

∫ u

0

|λv − λ| /λ dv

)
du.

Then we change the variable x =
∫ u

0
|λv − λ| dv, so that

(38) eα ≤ ĝ(α)
λ

αc

[
exp

(
αc

λ

∫ ∞

0

|λu − λ| du

)
− 1

]
.

On the other hand, the definition of eα in (30) yields for all x ≥ 0 that

−eα ≤ eαxP0x(τx < ∞) − eαxP0x(τx < ∞) ≤ eα.

Taking the supremum and infimum as x → ∞ we derive inequality (36) from the latter
results and (38).

Finally, inequality (36) implies that limx→∞ exp(αx)P0x(τx < ∞) is positive and
limx→∞ exp(αx)P0x(τx < ∞) is finite for all sufficiently small

∫ ∞
0

|λu − λ| du. Therefore
equality (37) holds.

4. Proofs

Proof of Theorem 1. We use Theorem 1 of [5]. Note that assumptions (A.P), (D),
and (T) of [5] are identical to the corresponding assumptions of this paper, while as-
sumption (Q) of [5] holds in view of (9). According to Theorem 1 of [5],

(39) µPstf = µQt−sf +
∫ t

s

µPsuDuQt−uf du

for all µ ∈ ℵ, f ∈ �, and all 0 ≤ s ≤ t.
Consider the operator

(40) ∆β
st ≡ exp(β(t − s))(Pst − Qt−s).

We deduce from (39) that

(41)
µ∆β

stf =
∫ t

s

eβ(u−s)µPsuDuQt−ufeβ(t−u) du

=
∫ t

s

eβ(u−s)µQsuDuQt−ufeβ(t−u) du +
∫ t

s

µ∆β
suDuQt−ufeβ(t−u) du.

This together with (13) implies that

(42)
∣∣∣µ∆β

stf
∣∣∣ ≤ ‖µ‖ qT (β)εT (β)‖f‖ + sup

s≤u≤T

∥∥µ∆β
su

∥∥ εT (β)‖f‖

for all 0 ≤ s ≤ t ≤ T .
Taking the supremum on both sides of the latter inequality over f ∈ �0 such that

‖f‖ ≤ 1 and then over s ≤ t ≤ T we obtain

sup
s≤u≤T

∥∥µ∆β
su

∥∥ ≤ ‖µ‖ qT (β)εT (β) + sup
s≤u≤T

∥∥µ∆β
su

∥∥ εT (β),

whence
sup

s≤u≤T

∥∥µ∆β
su

∥∥ ≤ ‖µ‖ qT (β)εT (β)/(1 − εT (β)).

Now we evaluate the supremum in the latter relation over all µ such that ‖µ‖ = 1 and
prove inequality (15). �
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Proof of Theorem 2. We substitute f = 1 in (39) and approach the limit as t → ∞.
Then we obtain

(43) µps − µp =
∫ ∞

s

µPsuDup du

by the monotone convergence theorem.
This proves (17). �

Proof of Theorem 3. Consider the space (E, Ξ) = (R+, B(R+)).
For all α ≥ 0, we define the Banach spaces ℵ(α) and �(α) of σ-finite charges

ℵ(α) =
{

µ : ‖µ‖α ≡
∫ ∞

0

exp(−αx) |µ|(dx) < ∞
}

and bounded Ξ-measurable functions

�(α) =
{

f : ‖f‖α ≡ sup
x∈E

exp(αx) |f(x)| < ∞
}

,

respectively.
The corresponding operator norm of the transition kernel Q(x, B) equals

(44) ‖Q‖α = sup
x∈E

∫ ∞

0

exp(α(x − y)) |Q|(x, dy).

In particular, this implies that

(45)
‖Pst‖α = sup

x∈E

∫ ∞

0

exp(α(x − y)) Pst(x, dy) = sup
x∈E

Esx exp(α(x − Xt))

= exp
(
−αc(t − s) + Λt

s(ĝ(α) − 1)
)
,

where we used the definition of the compound Poisson process and equalities (19).
The estimate for ‖Qt−s‖α is similar, but λ(t − s) is substituted for Λt

s in this case:

(46) ‖Qt−s‖α ≤ exp
(
−αc(t − s) + λ(t − s)(ĝ(α) − 1)

)
.

A simple estimate (45) for the norm of the perturbed operator is available in the case
under consideration. We obtained equality (41) in the proof of Theorem 1. Now we
use (41) instead of the general but less sharp inequality of Theorem 1 and obtain the
bound

(47)
∥∥∆β

st

∥∥
α
≤

∫ t

s

eβ(u−s) ‖Psu‖α ‖DuQt−u‖α eβ(t−u) du.

The left hand side of (26) does not exceed

sup
x∈E

∫ T

0

exp
(
α(x − y) + β(t − s)

)
|(Pst − Qt−s)|(x, dy) =

∥∥∆β
st

∥∥
α

by definition (40) and in view of equality (44). Thus we need to estimate the right hand
side of (47).

We derive from the definition of the infinitesimal operator (21) and the definition of
the perturbation (AD) that

(48) Duf(x) = (λu − λ)
(∫ x

−∞
f(x − y) dG(y) − f(x)

)
for f ∈ �0(α) ≡ C1(R+) ∩ Cb(R+) ∩ �(α).

The expression in parentheses on the right hand side of the latter equality is a difference
of two nonnegative operators. Thus (44) implies that

(49) ‖Du‖α ≤ |λu − λ|max(ĝ(α), 1) = |λu − λ| ĝ(α).
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Therefore the integrand in the integral on the right hand side of (47) does not exceed

(50)

|λu − λ|ĝ(α) exp
[
β(u − s) − αc(u − s) + Λu

s (ĝ(α) − 1) − αc(t − u)

+ λ(u − s)(ĝ(α) − 1) + β(t − u)
]

= |λu − λ|ĝ(α) exp
[
β(t − s) − αc(t − s) + (Λu

s − λ(u − s))(ĝ(α) − 1)

+ λ(t − s)(ĝ(α) − 1)
]

= |λu − λ|ĝ(α) exp
[
(Λu

s − λ(u − s))(β − αc)/λ
]
,

where we used the definition (25) of the constant β.
Substituting (45), (46), and (49) into (47) we obtain inequality (26) with the help

of (50). �

Proof of Theorem 4. According to definition (16) of the functions ps and p,

ps(x) = lim
t→∞

Psx(τx > t, Xt ∈ E) = Psx(τx = ∞),

p(x) = P0x(τx = ∞).

It is obvious that p0 − p equals the difference of ruin probabilities in (30), while the
left hand side of (30) coincides with the norm ‖p0 − p‖a.

To estimate the latter norm we apply inequality (17):

(51) ‖p0 − p‖α ≤
∫ ∞

0

‖P0u‖α ‖Dup‖α du.

Lemma. The ruin function is such that

(52) ψ(x) ≡ 1 − p(x) ≤ exp(−αx) for all x ≥ 0

and for all 0 ≤ α ≤ αL.

Proof. We apply representation (1.9) of [8] with R = αL, F = G, and α = λ. Then we
get

(53)
exp(αLx)ψ(x) =

λ

c

∫ ∞

x

exp(αLx)(1 − G(y)) dy

+
λ

c

∫ x

0

exp(αLy)ψ(x − y)(1 − G(y)) dy.

Since exp(αLx) ≤ exp(αLy) and ψ(x − y) ≤ 1, we obtain

exp(αLx)ψ(x) ≤ λ

c

∫ ∞

x

exp(αLy)(1 − G(y)) dy = 1,

where the latter inequality follows from (28). �

We continue the proof of Theorem 4. Using equality (48) we get

(54) Dup(x) = (λu − λ)
(

G(x) − 1 −
∫ x

−∞
ψ(x − y) dG(y) + ψ(x)

)
.

Now we apply (52) and get

(55) |Dup(x)| ≤ exp(−αx) |λu − λ| ĝ(α)

for all α ∈ [0, αL].
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The definition of the norm in the space �(α) and relations (51), (45), and (55) yield
the bound

‖p0 − p‖α ≤
∫ ∞

0

exp
(
−αcu + Λu

0 (ĝ(α) − 1)
)
|λu − λ| ĝ(α) du

= ĝ(α)
∫ ∞

0

|λu − λ| exp
(
−αcu + Λu

0 (αc − β)/λ
)
du

= ĝ(α)
∫ ∞

0

|λu − λ| exp
(
−βu + (Λu

0 − λu)(αc − β)/λ
)
du,

where β is defined by (25). This proves inequality (30). �
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