Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

The ordinal convergence and Glivenko-Cantelli type theorems in $ L_p(-\infty,\infty)$


Author: I. K. Matsak
Translated by: O. I. Klesov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 75 (2006).
Journal: Theor. Probability and Math. Statist. 75 (2007), 83-92
MSC (2000): Primary 60B12
DOI: https://doi.org/10.1090/S0094-9000-08-00716-3
Published electronically: January 24, 2008
MathSciNet review: 2321183
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F (t)$ be a distribution function and $ F_n (t)$ the corresponding empirical distribution function. We find necessary and sufficient conditions for the ordinal convergence o-lim$ F_n=F $ in the spaces $ L_p (-\infty,\infty)$.


References [Enhancements On Off] (What's this?)

  • 1. V. I. Glivenko, Sulla determinazione empirica delle leggi di probabilitá, Giorn. Ist. Ital. Attuari. 4 (1933), no. 1, 92-99.
  • 2. M. Csörgö and P. Révész, Strong Approximations in Probability and Statistics, Akadémiai Kiadó, Budapest, 1981. MR 666546 (84d:60050)
  • 3. P. Gänssler and W. Stout, Empirical processes: A survey of results for independent and identically distributed random variables, Ann. Probab. 7 (1979), no. 2, 193-243. MR 525051 (80d:60002)
  • 4. E. V. Khmaladze, Some applications of the theory of martingales in statistics, Uspekhi Mat. Nauk 37 (1982), no. 6, 194-212. (Russian) MR 683280 (84c:62066)
  • 5. M. Ledoux and M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991. MR 1102015 (93c:60001)
  • 6. I. K. Matsak, Ordinal law of large numbers in Banach lattices, Teor. Imovir. Mat. Stat. 62 (2000), 83-95; English transl. in Theory Probab. Math. Statist. 62 (2001), 89-102. MR 1871511 (2002k:60019)
  • 7. I. K. Matsak, A remark on the ordered law of large numbers, Teor. Imovir. Mat. Stat. 72 (2005), 84-92; English transl. in Theory Probab. Math. Statist. 72 (2006), 93-102. MR 2168139 (2006f:60011)
  • 8. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, vol. 2, Springer-Verlag, Berlin, 1979. MR 0540367 (81c:46001)
  • 9. L. V. Kantorovich and G. P. Akilov, Functional Analysis, ``Nauka'', Moscow, 1984; English transl., Pergamon Press, Oxford-Elmsford, New York, 1982. MR 664597 (83h:46002)
  • 10. V. V. Yurinskiĭ, Exponential bounds for large deviations, Teor. Veroyatnost. Primenen. 19 (1974), no. 1, 152-153; English transl. in Theory Probab. Appl. 19 (1974), 154-155. MR 0334298 (48:12617)
  • 11. W. Feller, An Introduction to Probability Theory and its Applications, vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403 (42:5292)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60B12

Retrieve articles in all journals with MSC (2000): 60B12


Additional Information

I. K. Matsak
Affiliation: Department of Operations Research, Faculty for Cybernetics, National Taras Shevchenko University, Academician Glushkov Avenue, 6, Kyiv 03127, Ukraine
Email: mik@unicyb.kiev.ua

DOI: https://doi.org/10.1090/S0094-9000-08-00716-3
Keywords: Empirical distribution function, ordinal convergence, Glivenko--Cantelli theorem
Received by editor(s): September 1, 2005
Published electronically: January 24, 2008
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society