Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 

 

A bounded arbitrage strategy for a multiperiod model of a financial market in discrete time


Authors: Yu. S. Mishura, P. S. Shelyazhenko and G. M. Shevchenko
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 77 (2007).
Journal: Theor. Probability and Math. Statist. 77 (2008), 135-146
MSC (2000): Primary 91B28
Published electronically: January 16, 2009
MathSciNet review: 2432777
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The notion of $ \varepsilon$-arbitrage strategy is introduced for a multiperiod model. A theorem, analogous to the classical first fundamental theorem for a usual arbitrage strategy, is proved for this model. The difference between single-period and multiperiod models is discussed.


References [Enhancements On Off] (What's this?)

  • 1. J. Michael Harrison and Stanley R. Pliska, Martingales and stochastic integrals in the theory of continuous trading, Stochastic Process. Appl. 11 (1981), no. 3, 215–260. MR 622165, 10.1016/0304-4149(81)90026-0
  • 2. Robert C. Dalang, Andrew Morton, and Walter Willinger, Equivalent martingale measures and no-arbitrage in stochastic securities market models, Stochastics Stochastics Rep. 29 (1990), no. 2, 185–201. MR 1041035
  • 3. Freddy Delbaen and Walter Schachermayer, A general version of the fundamental theorem of asset pricing, Math. Ann. 300 (1994), no. 3, 463–520. MR 1304434, 10.1007/BF01450498
  • 4. Yu. Kabanov and C. Stricker, Remarks on the True No-Arbitrage Property, Manuscript, Laboratoire de Mathématiques de Besançon, 2003.
  • 5. Albert N. Shiryaev, Essentials of stochastic finance, Advanced Series on Statistical Science & Applied Probability, vol. 3, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. Facts, models, theory; Translated from the Russian manuscript by N. Kruzhilin. MR 1695318
  • 6. Hans Föllmer and Alexander Schied, Stochastic finance, Second revised and extended edition, de Gruyter Studies in Mathematics, vol. 27, Walter de Gruyter & Co., Berlin, 2004. An introduction in discrete time. MR 2169807
  • 7. Yu. S. Mishura, The fundamental theorem of financial mathematics for limited arbitrage, Applied Statistics. Actuarial and Financial Mathematics 2003, no. 1-2, 49-54. (Ukrainian)
  • 8. Yuri Kabanov and Christophe Stricker, A teachers’ note on no-arbitrage criteria, Séminaire de Probabilités, XXXV, Lecture Notes in Math., vol. 1755, Springer, Berlin, 2001, pp. 149–152. MR 1837282, 10.1007/978-3-540-44671-2_9
  • 9. Christophe Stricker, Arbitrage et lois de martingale, Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), no. 3, 451–460 (French, with English summary). MR 1066088
  • 10. Jia An Yan, Caractérisation d’une classe d’ensembles convexes de 𝐿¹ ou 𝐻¹, Seminar on Probability, XIV (Paris, 1978/1979) Lecture Notes in Math., vol. 784, Springer, Berlin, 1980, pp. 220–222 (French). MR 580127

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 91B28

Retrieve articles in all journals with MSC (2000): 91B28


Additional Information

Yu. S. Mishura
Affiliation: Department of Probability Theory and Mathematical Statistics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email: myus@univ.kiev.ua

P. S. Shelyazhenko
Affiliation: Department of Probability Theory and Mathematical Statistics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email: Pavlo.Shelyazhenko@gmail.com

G. M. Shevchenko
Affiliation: Department of Probability Theory and Mathematical Statistics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 6, Kyiv 03127, Ukraine
Email: zhora@univ.kiev.ua

DOI: http://dx.doi.org/10.1090/S0094-9000-09-00752-2
Keywords: Arbitrage strategy, $\eps $-{\arbitrage }, financial market, multiperiod model, self-financing strategy
Received by editor(s): July 29, 2005
Published electronically: January 16, 2009
Article copyright: © Copyright 2009 American Mathematical Society