EXISTENCE OF A LIMIT DISTRIBUTION OF A SOLUTION OF A LINEAR INHOMOGENEOUS STOCHASTIC DIFFERENTIAL EQUATION

UDC 519.21

D. O. IVANENKO

Abstract. We find conditions for the existence of a limit distribution (as \(t \to \infty \)) of a vector process \(\xi \) defined in \(\mathbb{R}_+ \) and determined by an inhomogeneous stochastic differential equation

\[
\xi(t) = \xi(0) - \xi \circ \alpha + f \ast \nu + g \ast \mu,
\]

where \(\alpha \) is a nonrandom continuous increasing function, \(\nu \) and \(\mu \) are independent Poisson and centered Poisson measures, respectively.

1. Introduction

Let \(\mathcal{E} \) be a \(\sigma \)-ring in a certain set \(\Theta \), \(\alpha \) a continuous increasing real-valued function defined in \(\mathbb{R}_+ \), \(f \) and \(g \) measurable \(\mathbb{R}^d \)-valued functions defined in \(\mathbb{R}_+ \times \Theta \), and \(\xi(0) \) an \(\mathbb{R}^d \)-valued random variable. Further let \(\nu \) and \(\upsilon \) be independent Poisson measures in \(\mathcal{B}(\mathbb{R}_+) \otimes \mathcal{E} \) with compensators \(\tilde{\nu} \) and \(\tilde{\upsilon} \), respectively. We also assume that \(\nu \) and \(\upsilon \) are independent of \(\xi(0) \). Put \(\mu = \upsilon - \tilde{\upsilon} \) and define a stochastic process \(\xi \) by the following equation:

\[
\xi(t) = \xi(0) - \int_0^t \xi(s) \, d\alpha(s) + \int_0^t \int_\Theta f(s, \theta) \, \nu(ds, d\theta) + \int_0^t \int_\Theta g(s, \theta) \, \mu(ds, d\theta)
\]

or, using the notation of [1, 2],

\[
(1) \quad \xi = \xi(0) - \xi \circ \alpha + f \ast \nu + g \ast \mu.
\]

We study conditions for the existence of the limit distribution of \(\xi(t) \) are \(t \to \infty \).

Necessary and sufficient conditions for the existence of the limit distribution of \(\xi \) are found in [3]–[5] for the case of \(f(s, \theta) = \theta \), \(g = 0 \), \(\alpha(s) = cs \), and \(\tilde{\upsilon}(ds, d\theta) = \lambda ds \Pi(d\theta) \). Ergodic properties of a vector Ornstein–Uhlenbeck process governed by a generalized Lévy process (that is, by a process with independent increments and continuous trajectories) are studied in Proposition 2.2 of [6] (also see Theorems 4.1 and 4.2 of [8]) and [7, Theorem 2.8]. It is assumed in all the papers mentioned above that the governing process is homogeneous in time.

The model studied in this paper includes the integrals with respect to two Poisson measures (one of them is centered) and both measures are inhomogeneous in time.

2000 Mathematics Subject Classification. Primary 60F05; Secondary 60J75.

Key words and phrases. Limit distribution, Poisson measure, Itô’s formula, Tauberian theorem.
2. Main results

In what follows $z \in \mathbb{R}^d$ denotes a row vector, while all other vectors are column vectors; f means $f|_{\Theta}$. We also put $E^0 = E[\cdots | \xi(0)]$, $\varphi(s, \theta, z) = e^{izf(s, \theta)} - 1$,

\[\gamma(s, \theta, z) = e^{izg(s, \theta)} - izg(s, \theta) - 1, \]

$K = \varphi \ast \tilde{\nu} + \gamma \ast \tilde{\nu}$, $\eta(t, z) = e^{iz\xi(t)}$, $X(t, z) = E^0 \eta(t, z)$, $\eta(t) = \eta(t, \cdot)$, and $X(t) = X(t, \cdot)$.

Assume that

\[\int_0^t \int |f(s, \theta)| \nu(ds, d\theta) < \infty \quad \text{a.s.,} \]

(3) \[\int_0^t \int |f(s, \theta)| I\{|f| < \varepsilon\} \nu(ds, d\theta) < \infty, \]

(4) \[\int_0^t \int |g(s, \theta)|^2 I\{|g| < \varepsilon\} \nu(ds, d\theta) < \infty, \]

(5) \[\int_0^t \int |g(s, \theta)| I\{|g| \geq \varepsilon\} \nu(ds, d\theta) < \infty \]

for all $t > 0$ and $\varepsilon > 0$.

According to the definition of a Poisson measure \mathbb{P}, the measures $\tilde{\nu}$ and ν are σ-finite, and thus (3) and (4) are not trivial restrictions, indeed.

Theorem 1. Let conditions (2)-(5) hold. Assume that, for all z, the function $K(\cdot, z)$ has a continuous derivative $h(\cdot, z)$ and that, for all t, the function $h(t, \cdot)$ is continuously differentiable. Then

\[X(t, z) = X(0, ze^{-\alpha(t)}) \exp \left\{ \int_0^t h(s, ze^{\alpha(s) - \alpha(t)}) \, ds \right\}. \]

Proof. First we prove the theorem under certain auxiliary assumptions (see steps 1° and 2° below) and then consider the general case (see steps 3° and 4°).

1°. Assume that the function α is continuously differentiable and that f and g are bounded. Let $U = f \ast \nu + g \ast \mu$. Since α is nonrandom and U does not depend on $\xi(0)$, we get from equality (1),

\[E^0 |\xi(t)| \leq |\xi(0)| + E |U(t)| + \int_0^t E^0 |\xi(s)| \, d\alpha(s). \]

The boundedness of the function f together with condition (3) where ε is an arbitrary number implies that

\[|f| \ast \tilde{\nu}(t) < \infty \]

for all t. Similarly, the boundedness of the function g together with condition (4) yields for all t,

\[|g|^2 \ast \tilde{\nu}(t) < \infty. \]

Since the functions f, g, $\tilde{\nu}$, and ν are nonrandom, $E |f| \ast \nu = |f| \ast \tilde{\nu}$ by Fubini’s theorem and $E |g \ast \mu|^2 \leq |g|^2 \ast \tilde{\nu}$ by Theorem 3.5.1 of [2]. This together with (8) and (9) implies $E |U(t)| < \infty$, whence

\[E^0 |\xi(t)| < \infty \]

by (7) and the Gronwall–Bellman lemma.

2°. Let $r = |z|$ and $a = z/r$. Given a, let $Y(t, r) = X(t, ra)$. It is clear that

\[\frac{\partial \eta}{\partial r} = ia \xi e^{ira \xi}, \]
whence \(|\partial \eta/\partial r| \leq |\xi|\). This together with (10) yields
\[
E^0 \left(\frac{\partial \eta}{\partial r} \circ \alpha \right) = \left(E^0 \frac{\partial \eta}{\partial r} \right) \circ \alpha
\]
by Fubini’s theorem and
\[
E^0 \frac{\partial \eta}{\partial r} = \frac{\partial}{\partial r} E^0 \eta = \frac{\partial Y}{\partial r}
\]
by the theorem on the differentiation of integrals [9]. Comparing these equalities with (11) we conclude that
\[
(12) \quad \frac{\partial Y}{\partial r} = iz E^0 \xi \eta.
\]

By Itô’s formula [1, Theorem 3.4.6] we obtain from (1),
\[
\eta = \eta(0) - i(z \xi \eta) \circ \alpha + (\varphi \eta^-) * \nu + \left((e^{izg} - 1) \eta^- \right) * \mu + (\gamma \eta^-) * \tilde{v}.
\]

Considering the conditional expectation with respect to \(\xi(0)\) of both sides of the latter equality and taking into account that the functions \(f\) and \(g\) are nonrandom and that \(K(\cdot, z)\) is continuous, we get
\[
Y = \eta(0) - i z (E^0 \xi \eta) \circ \alpha + Y \circ K.
\]

In view of (12), this equality is equivalent to the following Cauchy problem:
\[
(13) \quad \frac{\partial Y}{\partial r} = -r \tilde{\alpha} \frac{\partial Y}{\partial r} + hY, \quad Y(0, r) = e^{iz|X_0|},
\]
since \(\alpha\) and \(K(\cdot, z)\) are continuously differentiable. For continuous \(h(\cdot, z)\) and continuously differentiable \(h(t, \cdot)\), the solution of the latter Cauchy problem is given by
\[
Y(t, r) = Y \left(0, re^{-\tilde{\alpha}(t)} \right) \exp \left\{ \int_0^t h \left(s, rae^{\alpha(s) - \alpha(t)} \right) ds \right\},
\]
which is equivalent to (13).

3°. Consider a general nonnegative function \(q \in C^1(\mathbb{R}_+)\) such that \(\int_0^\infty q(t) \, dt = 1\) and \(q(t) = 0\) for \(|t| > 1\). Let \(q_n(t) = nq(nt)\) and
\[
\alpha_n(t) = \int_0^\infty q_n(t - s) \alpha(s) \, ds \equiv \int_0^\infty \alpha(t - s)q_n(s) \, ds.
\]
Note that \(q_n \geq 0, q_n(t) = 0\) for \(|t| > \frac{1}{n}\), and \(\int_0^\infty q_n(s) \, ds = 1\). It is clear that
\[
(14) \quad \lim_{n \to \infty} \sup_{s \leq t} |\alpha_n(s) - \alpha(s)| = 0
\]
for all \(t\). Moreover \(\dot{\alpha}_n(t) = \int_0^t \dot{q}_n(t - s) \alpha(s) \, ds\), and thus \(\alpha_n\) is a continuously differentiable function.

Now let \(\xi_n\) be a solution of the equation \(\xi_n = \xi(0) - \xi_n \circ \alpha_n + f * \nu + g * \mu\). The case of the theorem proved above shows that the corresponding function \(X_n\) is given by (10). We prove that
\[
(15) \quad \sup_{s \leq t} |\xi_n(s) - \xi(s)| \overset{P}{\to} 0.
\]

This relation implies the convergence of \(\eta_n\) to \(\eta\) and, as a consequence, the convergence of \(X_n\) to \(X\).

Denote \(\zeta = \xi e^{\alpha}\) and \(\zeta_n = \xi_n e^{\alpha_n}\). The integration by parts formula ([1, §3.4], [2, §2.3]) implies
\[
\zeta = \xi(0) + e^{\alpha} \circ \xi + \xi \circ e^{\alpha} + [\xi, e^{\alpha}].
\]

Since the function \(e^{\alpha}\) is continuous and has a bounded variation on every interval, we have \([e^{\alpha}] = 0\). Moreover, the processes \(\xi\) and \(\xi_n\), both being semimartingales, have a
finite square variation on every interval \([2,\ \text{Theorem } 2.1.3]\). Thus \([\xi, e^\alpha] = 0 = [\xi_n, e^\alpha]\). Therefore
\[
(16) \quad \zeta = \xi(0) + (e^\alpha f) \ast \nu + (e^\alpha g) \ast \mu.
\]
A similar formula holds for \(\zeta_n\), too. This implies that
\[
P \left\{ \sup_{s \leq t} |\zeta_n(s) - \zeta(s)| \geq \varepsilon \right\} \leq P \left\{ \sup_{s \leq t} |(e^\alpha - e^{\alpha_n}) f) \ast \nu(s)| \geq \frac{\varepsilon}{2} \right\}
\]

\[
+ P \left\{ \sup_{s \leq t} |(e^\alpha - e^{\alpha_n}) g) \ast \mu(s)| \geq \frac{\varepsilon}{2} \right\}
\]

(17) for all \(\varepsilon > 0\).

By Lenglart–Rebolledo’s inequality (\([2, \text{§1.9}, [11, \text{Theorem } 3.3.7]\])
\[
P \left\{ \sup_{s \leq t} |(e^\alpha - e^{\alpha_n}) g) \ast \mu| \geq \frac{\varepsilon}{2} \right\} \leq \frac{4 \delta}{\varepsilon^2} + P \left\{ |(e^\alpha - e^{\alpha_n})^2 |g|^2| \ast \bar{\nu} \geq \delta \right\}
\]

for all \(\varepsilon > 0\) and \(\delta > 0\). Now (15) follows from (17), (14), (2), and (9) by the Lebesgue dominated convergence theorem.

4°. Now we consider general functions \(f\) and \(g\). Let
\[
f^N = f 1(|f| \leq N), \quad g^N = f 1(|g| \leq N),
\]
and \(\zeta^N = \xi^N e^\alpha\), where \(\xi^N\) is a solution of the equation
\[
\xi^N = \xi(0) - \xi^N \circ \alpha + f^N \ast \nu + g^N \ast \mu.
\]
It follows from (16) by using a similar notation for \(\zeta^N\) that
\[
|\zeta - \zeta^N| \leq |(e^\alpha (f - f^N)) \ast \nu| + |(e^\alpha (g - g^N)) \ast \mu|.
\]
It is obvious that \(|f - f^N| \leq |f|\); thus condition (2) and the pointwise convergence of \((f^N)\) to \(f\) proves
\[
\lim_{N \to \infty} |e^\alpha (f - f^N)| \ast \nu = 0
\]
by the Lebesgue dominated convergence theorem. By condition (5),
\[
|g - g^N| \ast \bar{\nu}(t) < \infty,
\]
whence \(|g - g^N| \ast \nu(t) < \infty\). Thus \((g - g^N) \ast \mu = (g - g^N) \ast \nu - (g - g^N) \ast \bar{\nu}\). Then
\[
\lim_{N \to \infty} |e^\alpha (g - g^N)| \ast \nu = 0,
\]
\[
\lim_{N \to \infty} |e^\alpha (g - g^N)| \ast \bar{\nu} = 0
\]
by the Lebesgue dominated convergence theorem, since the functions \((g^N)\) pointwise converge to \(g\).

Let \(\alpha^{-1}(t) = \sup \{s: \alpha(s) \leq t\}\) (we apply the same notation for other increasing functions),
\[
R(t, z) = \int_0^t h \left(s, z e^{\alpha(s) - \alpha(t)} \right) ds,
\]
and \(Q(t, z) = R(\alpha^{-1}(t), z)\). Assume that
\[
(18) \quad \lim_{t \to \infty} \alpha(t) = \infty.
\]
This, in particular, means that \(\alpha^{-1}(t) < \infty\) for all \(t\). Lévy’s continuity theorem claims that the existence of the limit distribution of \(\xi(t)\) as \(t \to \infty\) is equivalent to the pointwise convergence of \(X(t, \cdot)\) to some function that is continuous at zero. Equality (10) shows that, under the assumptions of Theorem 1, the latter property is equivalent to the convergence of \(R(t, \cdot)\) to some function \(R(\cdot)\) such that \(\lim_{z \to 0} R(z) = 0\).
Consider the following condition.

Condition L. The limit \(R(z) = \lim_{t \to \infty} Q(t, z) \) exists.

Assume also that

\[
\begin{align*}
(19) & \quad \tilde{\nu}(ds, d\theta) = \Pi(s, d\theta) \, d\Lambda_1(s), \\
(20) & \quad \tilde{\nu}(ds, d\theta) = \Upsilon(s, d\theta) \, d\Lambda_2(s),
\end{align*}
\]

where \(\Lambda_1 \) and \(\Lambda_2 \) are nonrandom continuous increasing functions.

Remark 1. It is clear that expansions (19) and (20) are not unique, but any choice of the expansions is suitable for our goals. In what follows we fix arbitrary expansions among (19)–(20).

Denote

\[
\begin{align*}
Q_1(t, z) &= \int_0^t d\Lambda_1 \left(\alpha^{-1}(s) \right) \int \varphi \left(\alpha^{-1}(s), \theta, z e^{s-t} \right) \Pi \left(\alpha^{-1}(s), d\theta \right), \\
Q_2(t, z) &= \int_0^t d\Lambda_2 \left(\alpha^{-1}(s) \right) \int \gamma \left(\alpha^{-1}(s), \theta, z e^{s-t} \right) \Upsilon \left(\alpha^{-1}(s), d\theta \right), \\
Q_j^*(p, z) &= \int_p^\infty e^{-pt} Q_j(t, z) \, dt, \quad \beta_j(s) = \exp \left\{ -\alpha \left(\Lambda_j^{-1}(s) \right) \right\}.
\end{align*}
\]

Then \(Q = Q_1 + Q_2 \).

Assume for a moment that, for some \(p \geq 0 \) and \(z \),

\[
\begin{align*}
(21) & \quad p \int_0^\infty e^{-pt} \, dt \int_0^\infty d\Lambda_1 \left(\alpha^{-1}(s) \right) \left| \int \varphi \left(\alpha^{-1}(s), \theta, z e^{-t} \right) \Pi \left(\alpha^{-1}(s), d\theta \right) \right| < \infty, \\
(22) & \quad p \int_0^\infty e^{-pt} \, dt \int_0^\infty d\Lambda_2 \left(\alpha^{-1}(s) \right) \left| \int \gamma \left(\alpha^{-1}(s), \theta, z e^{-t} \right) \Upsilon \left(\alpha^{-1}(s), d\theta \right) \right| < \infty.
\end{align*}
\]

Lemma 1. Let conditions (21)–(23) and (19)–(22) hold. Assume that the functions \(\Lambda_j \) are absolutely continuous. Then

\[
\begin{align*}
(23) & \quad pQ_1^*(p, z) = p \int_0^\infty \beta_1(v)^p \left(\int \left(\int_0^v \varphi \left(\alpha^{-1}(v), \theta, u a \right) \, du \right) \right) \Pi \left(\alpha^{-1}(v), d\theta \right) \, dv, \\
(24) & \quad pQ_2^*(p, z) = p \int_0^\infty \beta_2(v)^p \left(\int \left(\int_0^v \gamma \left(\alpha^{-1}(v), \theta, u a \right) \, du \right) \right) \Upsilon \left(\alpha^{-1}(v), d\theta \right) \, dv.
\end{align*}
\]

As will be shown in Corollary 1, the factor \((u/r)^p \) does not influence the asymptotic behavior of the whole expression as \(p \to 0 \).

Proof. First we prove the result under the assumption that the function \(\alpha \) is strictly increasing. Note that the function \(\alpha^{-1} \) is continuous in this case. According to conditions (21) and (22) and by Fubini’s theorem, one can change the order of the integrals with respect to \(t \) and \(s \) in the corresponding expressions for \(Q_j^* \). We have

\[
\begin{align*}
pQ_1^*(p, z) &= p \int_0^\infty d\Lambda_1 \left(\alpha^{-1}(s) \right) \int \Pi \left(\alpha^{-1}(s), d\theta \right) \int_s^\infty e^{-pt} \varphi \left(\alpha^{-1}(s), \theta, z e^{s-t} \right) \, dt, \\
pQ_2^*(p, z) &= p \int_0^\infty d\Lambda_2 \left(\alpha^{-1}(s) \right) \int \Upsilon \left(\alpha^{-1}(s), d\theta \right) \int_s^\infty e^{-pt} \gamma \left(\alpha^{-1}(s), \theta, z e^{s-t} \right) \, dt.
\end{align*}
\]
Changing the variables $t = s + \ln(r/u)$ in the inner integral yields

$$pQ^*_1(p, z) = p\int_0^\infty e^{-ps} \left(\int_0^r \left(\int_0^\infty \frac{\varphi (\alpha^{-1}(s), \theta, ua)}{u} du \right) \Pi (\alpha^{-1}(s), d\theta) \right) d\Lambda_1 (\alpha^{-1}(s)).$$

$$pQ^*_2(p, z) = p\int_0^\infty e^{-ps} \left(\int_0^r \left(\int_0^\infty \frac{\gamma (\alpha^{-1}(s), \theta, ua)}{u} du \right) \Upsilon (\alpha^{-1}(s), d\theta) \right) d\Lambda_2 (\alpha^{-1}(s)).$$

Finally, changing the variables $\Lambda_1(\alpha^{-1}(s)) = v$ in the first integral and $\Lambda_2(\alpha^{-1}(s)) = u$ in the second one we prove (23) and (24).

Consider an arbitrary sequence of strictly increasing functions α_n approximating α. The functions β_n and φ_n are chosen in the same way with respect to β and φ.

It follows from (23) and a similar expression for Q^*_1 that

$$Q^*_1 - Q_1^* = \int_0^\infty dv \int_0^r \frac{1}{u} \left(\beta_{1n}(v)^p \varphi_n (\Lambda^{-1}_1(v), \theta, ua) \Pi (\alpha_n^{-1}(s), d\theta) - \int \beta_1(v)^p \varphi (\Lambda^{-1}_1(v), \theta, ua) \Pi (\alpha^{-1}(s), d\theta) \right) du.$$

The sequence (α_n) converges pointwise to α, β_1 is continuous, and φ is continuous in z. Thus the Lebesgue dominated convergence theorem implies the pointwise convergence of the sequence

$$\left(\int \beta_{1n}(v)^p \varphi_n (\Lambda^{-1}_1(v), \theta, ua) \Pi (\alpha_n^{-1}(s), d\theta) \right)$$

to

$$\int \beta_1(v)^p \varphi (\Lambda^{-1}_1(v), \theta, ua) \Pi (\alpha^{-1}(s), d\theta).$$

By condition (21) and by the Lebesgue dominated convergence theorem,

$$\lim_{n \to \infty} |p(Q^*_1 - Q^*_1)| = 0.$$

The equality $\lim_{n \to \infty} |p(Q^*_2 - Q^*_2)| = 0$ is proved in the same fashion. \square

Corollary 1. Let all the assumptions of Lemma 1 hold. Then

$$|Q^*_1(p, z)| \leq \int_0^\infty \beta_1(v)^p dv \int \Pi (\Lambda^{-1}_1(v), d\theta) \int_0^r \frac{\varphi (\Lambda^{-1}_1(v), \theta, ua)}{u} du,$$

$$|Q^*_2(p, z)| \leq \int_0^\infty \beta_2(v)^p dv \int \Upsilon (\Lambda^{-1}_2(v), d\theta) \int_0^r \frac{\gamma (\Lambda^{-1}_2(v), \theta, ua)}{u} du.$$
Remark 2. Conditions (25)–(28) are more restrictive than conditions (3)–(5).

The following result follows from Theorem 1 and Lemma 1.

Theorem 2. Let conditions (2), (18), and L hold. Assume that expansions (19) and (20) exist such that (25)–(28) hold. Let the limits

\[x_j = \lim_{p \to 0} p \int_0^\infty \beta_j(s)^p \, ds \]

exist and the functions \(\Lambda_j \) be absolutely continuous. Then \(\xi(t) \) has a limit distribution as \(t \to \infty \).

Remark 3. Condition L is not easy to check. Lemma 2 below reduces this condition to simpler ones.

Proof. 1°. First we assume that conditions (21) and (22) hold. Then Lemma 1 is satisfied and, according to a Tauberian theorem, one needs to show that

\[\lim_{r \to 0} \lim_{p \to 0} p Q^*_j(p, z) = 0, \quad j = 1, 2. \]

Put

\[G_1(s, r) = \int \Pi \left(\Lambda^{-1}_1(s), \theta \right) \frac{\varphi(\Lambda^{-1}_1(s), \theta, u)}{u} \, du, \]

\[G_2(s, r) = \int \Upsilon \left(\Lambda^{-1}_2(s), \theta \right) \frac{\gamma(\Lambda^{-1}_2(s), \theta, u)}{u} \, du. \]

We check that (29) follows from

\[\lim_{r \to 0} \lim_{t \to \infty} |G_j(t, r)| = 0, \quad j = 1, 2. \]

Fix an arbitrary \(\varepsilon > 0 \) and choose \(T_\varepsilon \) such that

\[|G_j(s, r)| \leq \lim_{t \to \infty} |G_j(t, r)| + \varepsilon \]

for all \(s > T_\varepsilon \). Then

\[\int_0^\infty p \beta^*_j(s) |G_j(s, r)| \, ds \leq \int_0^T p \beta^*_j(s) |G_j(s, r)| \, ds + \left(\lim_{t \to \infty} |G_j(t, r)| + \varepsilon \right) p \int_0^\infty \beta^*_j(s) \, ds \]

for \(T > T_\varepsilon \). Conditions (21) and (22) and the Lebesgue dominated convergence theorem prove the convergence to zero of the first term on the right hand side of the latter inequality. Since \(\varepsilon \) is arbitrary,

\[\lim_{p \to 0} \lim_{t \to \infty} p \int_0^\infty \beta^*_j(s) |G_j(s, r)| \, ds \leq x_j \lim_{t \to \infty} |G_j(t, r)|. \]

2°. We prove (29) for \(j = 1 \). For arbitrary \(A \in B(\mathbb{R}) \) and \(s \in \mathbb{R}_+ \), put

\[\Pi(s, A) = \Pi \left(\Lambda^{-1}_1(s), \{ \theta : af(\Lambda^{-1}_1(s), \theta) \in A \} \right). \]

Then

\[G_1(s, r) = J_1(s, r) + J_2(s, r), \]

where

\[J_1(s, r) = \int_{|x| \leq c} \Pi(s, dx) \int_0^r \frac{e^{ixu} - 1}{u} \, du \]

and

\[J_2(s, r) = \int_{|x| > c} \Pi(s, dx) \int_0^r \frac{e^{ixu} - 1}{u} \, du. \]

We show that \(\lim_{r \to 0} J_k(s, r) = 0, \) \(k = 1, 2 \).

The inequality

\[\left| \int_0^r \frac{e^{ixu} - 1}{u} \, du \right| \leq 2|x|r \]
yields the bound
\[(32) \quad |J_1(s, r)| \leq 2r \int_{|x| \leq c} |x| \Pi(s, dx).\]

Changing the variables \(u = t/x\) in the integral \(J_2\) we get
\[(33) \quad |J_2(s, r)| \leq \left| \int_{|x| > c} \Pi(s, dx) \int_0^r \frac{1 - \cos t}{t} \, dt \right| + \left| \int_{|x| > c} \Pi(s, dx) \int_0^r \frac{\sin t}{t} \, dt \right|.
\]

The uniform boundedness of the integral \(\int_0^r (\sin t)/t \, dt\) implies the convergence to zero of the second term on the right hand side of (33) as \(r \to 0\).

We apply the equality
\[
\int_0^r \frac{1 - \cos t}{t} \, dt = \int_0^{1/r} \frac{1 - \cos t}{t} \, dt + \int_{1/r}^r \frac{1 - \cos t}{t} \, dt
\]

to the first term on the right hand side of (33) and note that
\[
\left| \int_{|x| > c} \Pi(s, dx) \int_0^{1/r} \frac{1 - \cos t}{t} \, dt \right| \leq \left(\int_{|x| > c} (r/1) \Pi(s, dx) \right) \to 0
\]
as \(r \to 0\). Further we use the relations
\[
\int_{1/r}^r \frac{1 - \cos t}{t} \, dt = \int_1^{1/r} \frac{1 - \cos t}{t} \, dt = \ln(1 + r) - \int_1^{1/r} \frac{\cos t}{t} \, dt.
\]

Now (30) follows from (32), (33), (25), (26), and the uniform boundedness of the integral \(\int_1^{1/r} (\cos t)/t \, dt\).

3°. Now let \(j = 2\). Similarly to 2° we put
\[
\Upsilon(s, A) = \Upsilon \left(\Lambda^{-1}_2(s), \{ \theta : \theta \left\{ \Lambda^{-1}_2(s), \theta \right\} \in A \} \right).
\]

Then \(G_2(s, r) = \Phi_1(s, r) + \Phi_2(s, r)\), where
\[
\Phi_1(s, r) = \int_{|x| \leq c} \Upsilon(s, dx) \int_0^r e^{iu - iux - 1} \, du,
\]
\[
\Phi_2(s, r) = \int_{|x| > c} \Upsilon(s, dx) \int_0^r e^{iu - iux - 1} \, du.
\]

We show that
\[(34) \quad \lim_{r \to 0} \Phi_k(s, r) = 0, \quad k = 1, 2.
\]

We start the proof of (34) with the case of \(k = 1\). The inequality
\[
\left| \int_0^r \frac{e^{iu - iux - 1}}{u} \, du \right| \leq x^2 r^2
\]
yields the bound
\[(35) \quad |\Phi_1(s, r)| \leq r^2 \int_{|x| \leq c} x^2 \Upsilon(s, dx).
\]

For the case of \(k = 2\), we use the inequality
\[
\left| \int_0^r \frac{e^{iu - iux - 1}}{u} \, du \right| \leq |x| \left(r^2 + 2r \right)
\]
to obtain
\[
|\Phi_2(s, r)| \leq \left(r^2 + 2r \right) \int_{|x| > c} |x| \Upsilon(s, dx).
\]

This together with (35), (27), and (28) proves (34).
It follows from (30) and (31) that the expressions for \(pQ_j^r(p, r) \) obtained after the change of order of the integrals (Lemma 1) are finite for sufficiently small \(p \) and \(r \), whence we conclude that (21) and (22) hold. □

Let \(\Lambda_j(t) = t \) and \(a(t) = \lambda t \). Consider the following conditions.

Condition B1. There exist measurable nonrandom functions \(a \) and \(b \) defined on \(\mathbb{R}_+ \times \Theta \) and \(\sigma \)-finite measures \(\pi \) and \(\rho \) defined on \(\mathcal{E} \) such that \(\Pi(t, d\theta) = a(t, \theta) \pi(d\theta) \) and \(\Upsilon(t, d\theta) = b(t, \theta) \rho(d\theta) \).

Condition B2. For all \(\theta \),

\[
\lim_{T \to \infty} \sup_{t_1, t_2 > 2T} \int_0^T |f(t_1, \theta) - f(t_2, \theta)| \, du = 0,
\]

\[
\lim_{T \to \infty} \sup_{t_1, t_2 > 2T} \int_0^T |a(t_1, \theta) - a(t_2, \theta)| \, du = 0,
\]

\[
\lim_{T \to \infty} \sup_{t_1, t_2 > 2T} \int_0^T |g(t_1, \theta) - g(t_2, \theta)| \, du = 0,
\]

\[
\lim_{T \to \infty} \sup_{t_1, t_2 > 2T} \int_0^T |b(t_1, \theta) - b(t_2, \theta)| \, du = 0.
\]

Condition B3. There exist finite functions \(Q_j \) and \(m_j \) such that

\[|f(t, \theta)| \leq Q_1(\theta), \quad |g(t, \theta)| \leq Q_2(\theta), \quad a(t, \theta) \leq m_1(\theta), \quad b(t, \theta) \leq m_2(\theta) \]

for all \(t \geq 0 \).

Condition B4. The following integrals

\[
\int_{Q_1 \leq c} Q_1(\theta) m_1(\theta) \pi(d\theta), \quad \int_{Q_1 > c} \ln Q_1(\theta) m_1(\theta) \pi(d\theta),
\]

\[
\int_{Q_2 \leq c} Q_2(\theta) m_2(\theta) \rho(d\theta), \quad \int_{Q_2 > c} Q_2(\theta) m_2(\theta) \rho(d\theta)
\]

are finite.

Lemma 2. Conditions B1–B4, (2), (19), and (20) imply Condition L.

Proof. Write

\[
R(t, z) = \int_0^t ds \left(\int \varphi(s, \theta, ze^{\lambda(s-t)}) \Pi(s, d\theta) + \int \gamma(s, \theta, ze^{\lambda(s-t)}) \Upsilon(s, d\theta) \right).
\]

Put

\[
R_1(t, z) = \int_0^t du \int \varphi(t - u, \theta, ze^{-\lambda u}) a(t - u, \theta) \pi(d\theta),
\]

\[
R_2(t, z) = \int_0^t du \int \gamma(t - u, \theta, ze^{-\lambda u}) b(t - u, \theta) \rho(d\theta).
\]

Changing the variables \(s = t - u \) in the integral on the right hand side of (36) we get

\[R = R_1 + R_2. \]

First we prove that the limit of

\[V(t, \theta, z) = \int_0^t \varphi(t - u, \theta, ze^{-\lambda u}) a(t - u, \theta) \, du \]

exists as \(t \to \infty \).
Consider \(\text{Im} V(t, \theta, z) = \int_{t_1}^{t} \sin \left(e^{-\lambda u} z f(t - u, \theta) \right) a(t - u, \theta) \, du \). For arbitrary \(T \) and \(t_1, t_2 > 2T \), we have

\[
|\text{Im} V(t_1, \theta, z) - \text{Im} V(t_2, \theta, z)| \leq 2 \sum_{j=1}^{2} \left| \int_{T_j}^{T} a(t_j - u, \theta) \sin \left(e^{-\lambda u} z f(t_j - u, \theta) \right) \, du \right| + \left| \int_{0}^{T} [a(t_1 - u, \theta) \sin \left(e^{-\lambda u} z f(t_1 - u, \theta) \right) - a(t_2 - u, \theta) \sin \left(e^{-\lambda u} z f(t_2 - u, \theta) \right)] \, du \right|
\]

(39)

The first two terms on the right hand side of (39) obviously are less than

\[
2|z|m_1(\theta)Q_1(\theta) \int_{T}^{\infty} e^{-\lambda u} \, du = \frac{2}{\lambda}|z|m_1(\theta)Q_1(\theta)e^{-\lambda T}.
\]

The third term on the right hand side of (39) is bounded by

\[
m_1(\theta) \int_{T}^{\infty} |f(t_1 - u, \theta) - f(t_2 - u, \theta)| \, du + Q_1(\theta) \int_{0}^{T} |a(t_1 - u, \theta) - a(t_2 - u, \theta)| \, du.\]

Taking into account Condition B2 we get

\[
(40) \lim_{t_1, t_2 \to \infty} |\text{Im} V(t_1, \theta, z) - \text{Im} V(t_2, \theta, z)| = 0.
\]

Now we find a bound for \(\text{Im} R_1(t, z) \). Put

\[
\Theta_1 = \{ \theta : Q_1(\theta) \leq c \}, \quad \Theta_2 = \Theta \setminus \Theta_1, \quad H_k(t, z) = \int_{\Theta_k} \text{Im} V(t, \theta, z) \pi(d\theta).
\]

Then \(\text{Im} R_1(t, z) = H_1(t, z) + H_2(t, z) \).

We have \(|H_1(t, z)| \leq \lambda^{-1}|z| \int_{\Theta_1} Q_1(\theta) \pi(d\theta) \). For the case of \(H_2(t, z) \), we change the variable \(v = \lambda u \) and represent the inner integral as a sum of two integrals, namely

\[
H_2(t, z) \leq \frac{1}{\lambda} \int_{\Theta_2} m_1(\theta) \pi(d\theta) \times \left(\int_{0}^{\ln Q_1} \sin \left(e^{-v} z f(t - v/\lambda, \theta) \right) \, dv + \int_{\ln Q_1}^{\infty} \sin \left(z f(t - v/\lambda, \theta) e^{-v} \right) \, dv \right).
\]

This implies the bound

\[
|H_2(t, z)| \leq \frac{1}{\lambda} \int_{\Theta_2} m_1(\theta) \pi(d\theta) \left(\int_{0}^{\ln Q_1} \, dv + \int_{\ln Q_1}^{\infty} |z| Q_1(\theta) e^{-v} \, dv \right) \leq \frac{|z| + 1}{\lambda} \int_{\Theta_2} (\ln Q_1(\theta)) m_1(\theta) \pi(d\theta).
\]

Now equality (40), Condition B4, and the Lebesgue dominated convergence theorem imply that the limit of \(\text{Im} R_1(t, z) \) exists as \(t \to \infty \).

Note that

\[
\text{Re} V(t, \theta, z) = 2 \int_{0}^{t} \sin^2 \left(e^{-\lambda u} z f(t - u, \theta)/2 \right) a(t - u, \theta) \, du.
\]

Reasoning in the same way as above we derive from the latter equality that

\[
\lim_{t_1, t_2 \to \infty} |\text{Re} V(t_1, \theta, z) - \text{Re} V(t_2, \theta, z)| = 0.
\]
The existence of the limit as \(t \to \infty \) for the function
\[
\int_0^t \gamma(t - u, \theta, ze^{-\lambda u}) b(t - u, \theta) \, du
\]
is proved in a similar manner. The bound for \(R_2(t, z) \) is given by
\[
\frac{1}{\lambda} \left(|z|^2 \int_{Q_2 \leq c} Q_2(\theta)^2 \rho(d\theta) + 2|z| \int_{Q_2 > c} Q_2(\theta)^2 \rho(d\theta) \right). \tag{□}
\]

The assumptions of Theorem 2 become simpler if \(f, g, \Pi, \text{ and } \Upsilon \) do not depend on \(s \). The following assertion generalizes a result due to Zakusilo [5].

Corollary 2. Let conditions \((2), (19), \text{ and } (20) \) hold. Assume that there exist monotone bounded derivatives \(\varepsilon_j(t) = (\Lambda_j(\alpha^{-1}(t)))' \). If the integrals
\[
\int_{|f| > c} \ln|f(\theta)| \Pi(d\theta), \quad \int_{|f| \leq c} |f(\theta)| \Pi(d\theta),
\]
\[
\int_{|g| > c} |g(\theta)| \Upsilon(d\theta), \quad \int_{|g| \leq c} |g(\theta)|^2 \Upsilon(d\theta)
\]
are finite for all positive \(c \), then \(\xi \) has a limit distribution as \(t \to \infty \). The logarithm of the characteristic function of the limit distribution is equal to
\[
\psi(z) = \kappa_1 \int \Pi(d\theta) \int_0^{2|z|} \varphi(\theta, uz/|z|) \frac{ds}{u} + \kappa_2 \int \Upsilon(d\theta) \int_0^{2|z|} \gamma(\theta, uz/|z|) \frac{ds}{u},
\]
where \(\kappa_j = \lim_{t \to \infty} \varepsilon_j(t) \).

Proof. The assumptions of the corollary imply
\[
Q_1(t, z) = \int_0^t \alpha_1(s) \, ds \int \varphi(\theta, e^{s-t} z) \Pi(d\theta), \tag{41}
\]
\[
Q_2(t, z) = \int_0^t \alpha_2(s) \, ds \int \gamma(\theta, e^{s-t} z) \Upsilon(d\theta). \tag{42}
\]
Changing the variables \(s = t + \ln(v/|z|) \) on the right hand sides of both equalities (41) and (42) we obtain
\[
Q_1(t, z) = \int_{|z| e^{-t}}^{2|z|} \alpha_1 \left(t + \ln \frac{v}{|z|} \right) dv \int \varphi(\theta, vz/|z|) \frac{dv}{v} \Pi(d\theta),
\]
\[
Q_2(t, z) = \int_{|z| e^{-t}}^{2|z|} \alpha_2 \left(t + \ln \frac{v}{|z|} \right) dv \int \gamma(\theta, vz/|z|) \frac{dv}{v} \Upsilon(d\theta).
\]
The two latter relations imply that the functions \(Q_j, j = 1, 2, \) are monotone in \(t \), since so are the functions \(\varepsilon_j, j = 1, 2 \). Therefore the classical Tauberian theorem gives
\[
\lim_{t \to \infty} Q_j(t, z) = \lim_{p \to 0} pQ_j^*(p, z).
\]
Note that conditions (25)–(28) hold.

Corollary 1 and Theorem 2 imply that
\[
\psi(z) = \int \Pi(d\theta) \int_0^{2|z|} \varphi(\theta, uz/|z|) \frac{ds}{u} \lim_{p \to 0} p \int_0^\infty \beta_1(v)^p \, dv
\]
\[
+ \int \Upsilon(d\theta) \int_0^{2|z|} \gamma(\theta, uz/|z|) \frac{ds}{u} \lim_{p \to 0} p \int_0^\infty \beta_2(v)^p \, dv.
\]
Since κ_j is monotone, we deduce by the classical Tauberian theorem that
\[
\lim_{p \to 0} p \int_0^\infty \beta_j(t)^p dt = \lim_{p \to 0} p \int_0^\infty e^{-pt} \kappa_j(t) dt = \kappa_j. \quad \square
\]

Example 1. The functions for which nontrivial κ_j exist can be found from the relation $\Lambda_j(t) = \lambda_j \alpha(t)$, which is a consequence of the equation $\Lambda_j(\alpha^{-1}(t)) = \lambda_j t$. For example, $\alpha(t) = \ln(t + 1)$ and $\Lambda_j(t) = \lambda_j \ln(t + 1)$ or $\alpha(t) = t^\delta$ and $\Lambda_j(t) = \lambda_j t^\delta$, $\delta > 0$.

ACKNOWLEDGEMENT

The author is indebted to A. P. Yurachkovskii for valuable comments concerning the content of the paper.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS AND THEORETICAL RADIOPHYSICS, FACULTY FOR RADIOPHYSICS, NATIONAL TARAS SHEVCHENKO UNIVERSITY, ACADEMICIAN GLUSHKOV AVENUE 6, KYIV 03127, UKRAINE

E-mail address: ida@univ.kiev.ua

Received 3/JUL/2007

Translated by N. SEMENOV