Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)



Difference approximation of the local times of multidimensional diffusions

Author: Aleksey M. Kulik
Translated by: S. Kvasko
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 78 (2008).
Journal: Theor. Probability and Math. Statist. 78 (2009), 97-114
MSC (2000): Primary 60J55, 60J45, 60F17
Published electronically: August 4, 2009
MathSciNet review: 2446852
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Sequences of additive functionals of difference approximations are considered for multidimensional uniformly nondegenerate diffusions. Sufficient conditions are obtained for the weak convergence of such sequences to a $ W$-functional of the limit process. The class of $ W$-functionals appearing as limits for such a problem can be described uniquely in terms of the corresponding $ W$-measures $ \mu$ as follows:

$\displaystyle \lim_{\delta\downarrow 0}\sup_{x\in\mathbb{R}^m}\int_{\Vert y-x\Vert\leq \delta}w(\Vert y-x\Vert) \mu(dy)=0, $

where $ w(r)=\begin{cases}\max(-\ln r, 1),& m=2,\\ r^{2-m},& m>2. \end{cases}$

References [Enhancements On Off] (What's this?)

  • 1. A. V. Skorokhod, Asymptotic Methods in the Theory of Stochastic Differential Equations, Naukova Dumka, Kiev, 1987; English transl., AMS, Providence, 1992. MR 913305 (88m:60164); MR 1020057 (90i:60038)
  • 2. E. B. Dynkin, Markov Processes, Fizmatgiz, Moscow, 1963; English transl., Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. MR 0193670 (33:1886); MR 0193671 (33:1887)
  • 3. A. V. Skorokhod and N. P. Slobodenyuk, Limit Theorems for Random Walks, Naukova Dumka, Kiev, 1970. (Russian) MR 0282419 (43:8130)
  • 4. A. N. Borodin and I. A. Ibragimov, Limit Theorems for Functionals of Random Walks, Proceedings of Mathematical Institute of RAN, vol. 195, Nauka, Sankt Petersburg, 1994; English transl., AMS, Providence, RI, 1995. MR 1368394 (97j:60140)
  • 5. I. I. Gikhman, Some limit theorems on the number of intersections of a random function and the boundary of a given domain, Nuk. Zap. Kiev University 16 (1957), no. 10, 149-164. (Ukrainian)
  • 6. I. I. Gikhman, Asymptotic distributions of the number of intersections of a random function and the boundary of a given domain, Visnyk Kiev University, Ser. Astronom, Matem., Mekh. 1 (1958), no. 1, 25-46. (Ukrainian)
  • 7. N. I. Portenko, Integral equations and limit theorems for additive functionals of a Markov process, Teor. Veroyatnost. i Primenen. 12 (1967), no. 3, 551-558; English transl. in Theory Probab. Appl. 12 (1967), no. 3, 500-505. MR 0221596 (36:4648)
  • 8. A. N. Borodin, On the asymptotic behavior of local times of recurrent random walks with finite variance, Teor. Veroyatnost. i Primenen. 26 (1981), no. 4, 769-783; English transl. in Theory Probab. Appl. 26 (1981), no. 4, 758-772. MR 636771 (83a:60120)
  • 9. E. Perkins, Weak invariance principles for local time, Z. Wahrscheinlichkeitstheorie verw. Gebiete 60 (1982), 437-451. MR 665738 (83h:60080)
  • 10. A. S. Cherny, A. N. Shiryaev, and M. Yor, Limit behavior of the ``horizontal-vertical'' random walk and some extensions of the Donsker-Prokhorov invariance principle, Teor. Veroyatnost. i Primenen. 47 (2002), no. 3, 498-517; English transl. in Theory Probab. Appl. 47 (2003), no. 3, 377-394. MR 1975425 (2004b:60121)
  • 11. R. F. Bass and D. Khoshnevisan, Local times on curves and uniform invariance principles, Prob. Theory Related Fields 92 (1992), 465-492. MR 1169015 (93e:60161)
  • 12. E. B. Dynkin, Self-intersection gauge for random walks for Brownian motion, Ann. Probab. 16 (1988), 1-57. MR 920254 (89f:60053)
  • 13. V. Konakov and E. Mammen, Local limit theorems for transition densities of Markov chains converging to diffusions, Prob. Theory Related Fields 117 (2000), 551-587. MR 1777133 (2001j:60141)
  • 14. V. Konakov, Small Time Asymptotics in Local Limit Theorems for Markov Chains Converging to Diffusions, arXiv:math. PR/0602429, 2006.
  • 15. Yu. N. Kartashov and A. M. Kulik, Weak convergence of additive functionals of a sequence of Markov chains, Theory Stoch. Process. 15(31) (2009), no. 1. (to appear)
  • 16. A. M. Kulik, Markov approximation of stable processes by random walks, Theory Stoch. Proccess. 12(28) (2006), no. 1-2 87-93. MR 2316289 (2008j:60082)
  • 17. A. S. Gibbs and F. E. Su, On choosing and bounding probability metrics, Internat. Statist. Review 70 (2001), 419-35.
  • 18. J. L. Doob, Stochastic Processes, John Wiley, New York, 1953. MR 0058896 (15:445b)
  • 19. V. S. Vladimirov, Equations of Mathematical Physics, Nauka, Moscow, 1967; English transl., Marcel Dekker, New York, 1971. MR 0239242 (39:599); MR 0268497 (42:3394)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60J55, 60J45, 60F17

Retrieve articles in all journals with MSC (2000): 60J55, 60J45, 60F17

Additional Information

Aleksey M. Kulik
Affiliation: Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivs’ka Street 3, 01601, Kyiv, Ukraine

Keywords: Additive functional, local time, characteristic, $W$-measure, Markov approximation
Received by editor(s): February 12, 2007
Published electronically: August 4, 2009
Additional Notes: Supported by the Ministry of Education and Science of Ukraine, project GP/F13/0095
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society