Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

An estimate for the mean error probability of a Bayesian criterion for testing hypotheses in the problem of cryptanalysis of a combined gamma generator with nonuniform noise


Authors: A. M. Oleksiĭchuk and R. V. Proskurovs'kiĭ
Translated by: S. Kvasko
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 78 (2008).
Journal: Theor. Probability and Math. Statist. 78 (2009), 167-174
MSC (2000): Primary 94A60; Secondary 94B70
DOI: https://doi.org/10.1090/S0094-9000-09-00770-4
Published electronically: August 4, 2009
MathSciNet review: 2446857
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A probability model for a combined gamma generator with nonuniform noise in a resynchronization mode is studied. We consider the problem of testing hypotheses about the distribution of a random binary vector $ X^{(0)}$ (the state of a combined gamma generator) by using a sampled binary sequence whose signs depend on $ X^{(0)}$ in a specified way and on certain other random parameters. We obtain a nonasymptotic upper bound for the mean error probability of a Bayesian criterion for testing the hypotheses mentioned above.


References [Enhancements On Off] (What's this?)

  • 1. P. Ekdahl and T. Johansson, Another attack on A5/1, IEEE Trans. on Inform. Theory IT-49 (2003), no. 1. 284-289. MR 1966707 (2004b:94059)
  • 2. A. N. Alekseĭchuk and R. V. Proskurovskiĭ, A lower bound for the probability of distinguishing the inner states of a clock-controlled combiner, Pravove, Normatyvne ta Metrologychne Zabezpechennya Systemy Zahystu Informacii v Ukraine 2(13) (2006), 159-169. (Russian)
  • 3. F. Armknecht, J. Lano, and B. Preneel, Extending the resynchronization attack, Cryptology ePrint Archive, Report 2004/232 (http://eprint.iacr.org./2004/232/). MR 2180666 (2006h:94069)
  • 4. A. A. Borovkov, Mathematical Statistics, Nauka, Moscow, 1984; English transl., Gordon and Breach, Amsterdam, 1998. MR 782295 (86i:62001); MR 1712750 (2000f:62003)
  • 5. O. A. Logachev, A. A. Sal'nikov, and V. V. Yashchenko, Boolean Functions in Coding Theory and Cryptology, Moskovskii Tsentr Nepreryvnogo Matematicheskogo Obrazovaniya, Moscow, 2004. (Russian) MR 2078186 (2005g:94001)
  • 6. W. Høffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), no. 301, 13-30. MR 0144363 (26:1908)
  • 7. I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems, Academic Press, New York, 1981. MR 666545 (84e:94007)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 94A60, 94B70

Retrieve articles in all journals with MSC (2000): 94A60, 94B70


Additional Information

A. M. Oleksiĭchuk
Affiliation: Institute of Special Communication and Protection of Information, National Technical University of Ukraine KPI, Moskovs’ka Street 45/1, Kyiv 01011, Ukraine
Email: alex-crypto@mail.ru

R. V. Proskurovs'kiĭ
Affiliation: Institute of Special Communication and Protection of Information, National Technical University of Ukraine KPI, Moskovs’ka Street 45/1, Kyiv 01011, Ukraine
Email: roman-crypto@mail.ru

DOI: https://doi.org/10.1090/S0094-9000-09-00770-4
Keywords: Statistical methods of cryptanalysis, test of hypotheses
Received by editor(s): December 4, 2006
Published electronically: August 4, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society