Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Fractal properties of some Bernoulli convolutions


Authors: Ya. V. Goncharenko, M. V. Pratsyovytyĭ and G. M. Torbin
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 79 (2008).
Journal: Theor. Probability and Math. Statist. 79 (2009), 39-55
MSC (2000): Primary 60G30, 11K55, 28A80
DOI: https://doi.org/10.1090/S0094-9000-09-00779-0
Published electronically: December 29, 2009
MathSciNet review: 2494534
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the structure and topological, metric, and fractal properties of the distribution of the random variable

$\displaystyle \xi=\sum_{k=1}^\infty \xi_k a_k, $

where $ \sum_{k=1}^\infty a_k$ is a convergent series of positive terms $ a_k$ such that

$\displaystyle a_{3k-2}= a_{3k-1}+a_{3k}, $

$ a_{i} \ge\nobreak a_{i+1}+a_{i+2}+\cdots$, $ i \ne 3k-2$, $ k \in\mathbf N$, and where $ \xi_k$ are independent random variables assuming two values 0 and $ 1$ with the probabilities $ p_{0k}$ and $ p_{1k}$, respectively. We prove that the distribution of $ \xi$ is either purely discrete or purely singularly continuous. We obtain the criteria for a distribution to belong to each of these types. The topological-metric structure of the distribution is studied in the continuous case. The main result of the paper describes the fractal properties of the distribution of the random variable $ \xi$. The relations are obtained for the Hausdorff-Besicovitch spectrum (the minimal closed support) of the random variable $ \xi$ and for the Hausdorff dimension of the corresponding probability measure $ \mu_{\xi}$.


References [Enhancements On Off] (What's this?)

  • 1. Ya. V. Goncharenko, Convolutions of distributions of sums of random series of a special form, Naukov. Zapys. Nats. Dragomanov Pedagog. Univ. Fiz. Mat. Nauky (2003), no. 4, 216-232. (Ukrainian)
  • 2. Ya. V. Goncharenko, M. V. Pratsyovytiĭ, and G. M. Torbin, Topological-metric and fractal properties of a convolution of two singular distributions of random variables with independent binary digits, Teor. Imovir. Mat. Stat. 67 (2002), 9-19; English transl. in Theory Probab. Math. Statist. 67 (2003), 11-22. MR 1956615 (2003k:60032)
  • 3. Ya. V. Goncharenko, M. V. Pratsyovytiĭ, G. M. Torbin, Topological-metric and fractal properties of the set of incomplete sums of a series of positive terms and distributions on it, Naukov. Chasopys Nats. Dragomanov Pedagog. Univ. Ser. 1, Fiz. Mat. Nauky (2005), no. 6, 210-224. (Ukrainian)
  • 4. M. V. Pratsyovytiĭ, Fractal Approach in the Studies of Singular Distributions, National Dragomanov Pedagogical University, Kyiv, 1998. (Ukrainian)
  • 5. M. V. Pratsyovytiĭ and G. M. Torbin, On a class of random variables of the Jessen-Wintner type, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (1998), no. 4, 48-54. (Ukrainian) MR 1699106 (2000g:60020)
  • 6. G. M. Torbin, Fractal properties of distributions of random variables with independent $ Q^*$-symbols, Naukov. Zapys. Nats. Dragomanov Pedagog. Univ. Fiz. Mat. Nauky (2002), no. 3, 363-375. (Ukrainian)
  • 7. G. M. Torbin, Multifractal analysis of singularly continuous probability measures, Ukrain. Mat. Zh. 57 (2005), no. 5, 706-721; English transl. in Ukrainian Math. J. 57 (2005), no. 5, 837-857. MR 2209816 (2007f:28010)
  • 8. A. F. Turbin and M. V. Pratsyovytiĭ, Fractal Sets, Functions, Distributions, Naukova Dumka, Kiev, 1992. (Russian) MR 1353239 (96f:28010)
  • 9. T. Šalat, Hausdorff measure of linear sets, Czechoslovak Math. J. 11(86) (1961), 24-56. (Russian) MR 0153802 (27:3763)
  • 10. S. Albeverio, Ya. Gontcharenko, M. Pratsiovytyĭ, and G. Torbin, Convolutions of distributions of random variables with independent binary digits, Random Oper. Stoch. Equ. 15 (2007), no. 1, 89-97. MR 2316190 (2008b:11089)
  • 11. S. Albeverio, Ya. Gontcharenko, M. Pratsiovytyĭ, and G. Torbin, Jessen-Wintner type random variables and fractal properties of their distributions, Math. Nachr. 279 (2006), no. 15, 1619-1633. MR 2269312 (2008g:28034)
  • 12. S. Albeverio, V. Koshmanenko, M. Pratsiovytyĭ, and G. Torbin, $ \widetilde{Q}$-representation of real numbers and fractal probability distributions, Preprint SFB-611, Bonn, http://front. math.ucdavis.edu/0308.5007 (submitted to J. Funct. Anal.).
  • 13. S. Albeverio and G. Torbin, Image measures of infinite product measures and generalized Bernoulli convolutions, Naukov. Chasopys Nats. Dragomanov Pedagog. Univ. Ser. 1, Fiz. Mat. Nauky (2004), no. 5, 248-264.
  • 14. S. Albeverio and G. Torbin, Fractal properties of singularly continuous probability distributions with independent $ Q^{*}$-digits, Bull. Sci. Math. 129 (2005), no. 4, 356-367. MR 2134126 (2006b:28013)
  • 15. S. Albeverio and G. Torbin, On fine fractal properties of generalized infinite Bernoulli convolutions, Preprint SFB-611, vol. 340, 2007. Bull. Sci. Math. 132 (2008), 711-727. MR 2474489
  • 16. J. C. Alexander and D. Zagier, The entropy of a certain infinitely convolved Bernoulli measure, J. London Math. Soc. 44 (1991), 121-134. MR 1122974 (92g:28035)
  • 17. P. Billingsley, Hausdorff dimension in probability theory. II, Illinois J. Math. 5 (1961), 291-198. MR 0120339 (22:11094)
  • 18. M. Cooper, Dimension, measure and infinite Bernoulli convolutions, Math. Proc. Cambr. Phil. Soc. 124 (1998), 135-149. MR 1620520 (99h:28013)
  • 19. P. Erdös, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974-975. MR 0000311 (1:52a)
  • 20. K. J. Falconer, Fractal Geometry, John Wiley & Sons, 1990. MR 1102677 (92j:28008)
  • 21. A. M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409-432. MR 0137961 (25:1409)
  • 22. R. Kershner and A. Wintner, On symmetric Bernoulli convolutions, Amer. J. Math. 57 (1935), 541-548. MR 1507093
  • 23. B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1935), 48-88. MR 1501802
  • 24. F. Ledrappier and A. Porzio, A dimension formula for Bernoulli convolutions, J. Statist. Phys. 76 (1994), 1307-1327. MR 1298104 (95i:58111)
  • 25. F. Ledrappier and A. Porzio, On the multifractal analysis of Bernoulli convolutions. I. Large-deviation results, J. Statist. Phys. 82 (1996), 367-395. MR 1372657 (97b:58088)
  • 26. F. Ledrappier and A. Porzio, On the multifractal analysis of Bernoulli convolutions. II. Dimensions, J. Statist. Phys. 82 (1996), 397-420. MR 1372658 (97b:58089)
  • 27. P. Lévy, Sur les séries dont les termes sont des variables indépendantes, Studia Math. 3 (1931), 119-155.
  • 28. R. Lyons, Seventy years of Rajchman measures, J. Fourier Anal. Appl., Kahane Special Issue (1995), 363-377. MR 1364897 (97b:42019)
  • 29. Y. Peres, W. Schlag, and B. Solomyak, Sixty years of Bernoulli convolutions in fractal geometry and stochastics II, Progress in Probab. 46 (2000), 39-65. MR 1785620 (2001m:42020)
  • 30. Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof, Math. Res. Lett. 3 (1996), no. 2, 231-239. MR 1386842 (97f:28006)
  • 31. Y. Peres and B. Solomyak, Self-similar measures and intersections of Cantor sets, Trans. Amer. Math. Soc. 350 (1998), no. 10, 4065-4087. MR 1491873 (98m:26009)
  • 32. Y. Peres, K. Simon, and B. Solomyak, Absolute continuity for random iterated function systems with overlaps, J. London Math. Soc. 74 (2006), no. 3, 739-756. MR 2286443 (2007m:37053)
  • 33. M. V. Pratsiovytyĭand O. Y. Feshchenko, Topological-metrical and fractal properties of the distributions on the set of the incomplete sums of series of positive terms, Theory of Stochastic Processes 13 (29) (2007), no. 1-2, 205-224. MR 2343824 (2009a:28025)
  • 34. J. Reich, Some results on distributions arising from coin tossing, Ann. Probab. 10 (1982), no. 3, 780-786. MR 659547 (83k:60026a)
  • 35. J. Reich, When do weighted sums of independent random variables have a density--some results and examples, Ann. Probab. 10 (1982), no. 3, 787-798. MR 659548 (83k:60026b)
  • 36. B. Solomyak, On the random series $ \sum \pm \lambda^{n}$ (an Erdös problem), Ann. of Math. (2) 142 (1995), 611-625. MR 1356783 (97d:11125)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60G30, 11K55, 28A80

Retrieve articles in all journals with MSC (2000): 60G30, 11K55, 28A80


Additional Information

Ya. V. Goncharenko
Affiliation: Department of Higher Mathematics, National Dragomanov Pedagogical University, Pirogova Street 9, Kyiv 01130, Ukraine
Email: yan_a@ukr.net

M. V. Pratsyovytyĭ
Affiliation: Department of Higher Mathematics, National Dragomanov Pedagogical University, Pirogova Street 9, Kyiv 01130, Ukraine
Email: prats4@yandex.ru

G. M. Torbin
Affiliation: Department of Higher Mathematics, National Dragomanov Pedagogical University, Pirogova Street 9, Kyiv 01130, Ukraine
Email: torbin@imath.kiev.ua

DOI: https://doi.org/10.1090/S0094-9000-09-00779-0
Keywords: Bernoulli convolution, singularly continuous probability distribution, Hausdorff--Besicovitch dimension, Hausdorff dimension of a distribution (measure), the set of incomplete sums of a series
Received by editor(s): November 27, 2007
Published electronically: December 29, 2009
Additional Notes: The first author is supported by the grant DFG 436 113/80
The second author is supported by the grants DFG 436 UKR 113/78 and DFG 436 113/80
The third author is supported by the grants DFG 436 UKR 113/78 and DFG 436 113/80 and by the Alexander von Humboldt Foundation
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society