Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Asymptotic behavior of the solution of a linear stochastic differential-difference equation of neutral type


Authors: I. V. Malyk, E. F. Tsar'kov and V. K. Yasyns'kyĭ
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 79 (2008).
Journal: Theor. Probability and Math. Statist. 79 (2009), 89-100
MSC (2000): Primary 60F15; Secondary 60G44
DOI: https://doi.org/10.1090/S0094-9000-09-00783-2
Published electronically: December 30, 2009
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Necessary and sufficient conditions are found for the exponential mean square stability of a stochastic differential-difference linear equation of neutral type in the scalar case.


References [Enhancements On Off] (What's this?)

  • 1. N. V. Azbelev, V. P. Maksimov, and L. F. Rakhmatullina, Introduction to the Theory of Linear Functional-Differential Equations, Nauka, Moscow, 1991; English transl., World Federation Publishers Company, Atlanta, GA, 1995. MR 1144998 (92j:34123); MR 1375462 (96m:34132)
  • 2. E. A. Andreeva, V. B. Kolmanovskiĭ, and L. E. Shaĭkhet, Control of Systems with Aftereffect, Nauka, Moscow, 1992; English transl., V. B. Kolmanovskiĭ and L. E. Shaĭkhet, American Mathematical Society, Providence, RI, 1996. MR 1185708 (93i:49001); MR 1415834
  • 3. R. R. Akhmerov, M. I. Kamenskiĭ, A. S. Potapov, A. E. Rodkina, and B. N. Sadovskiĭ, The theory of equations of neutral type, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Mathematical Analysis 19 (1982), no. 1, 55-126, 232. (Russian) MR 657948 (83j:34078)
  • 4. R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York-London, 1967. MR 0147745 (26:5259)
  • 5. Yu. V. Bereza and V. K. Yasyns'kyĭ, The existence of solutions of stochastic differential functional equations of the neutral type with Poissonian switchings, Visn. Kyiv. Univ., Ser. Fiz.-Mat. Nauky 5 (2002), no. 1, 19-27. (Ukrainian)
  • 6. G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation, Springer-Verlag, New York-Heidelberg, 1974; Translated from the second German edition. MR 0344810 (49:9549)
  • 7. J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Nauka, Moscow, 1994; English transl. of the second edition, Springer-Verlag, Berlin, 2003. MR 1943877 (2003j:60001)
  • 8. V. B. Kolmanovskiĭ and V. R. Nosov, Stability and Periodic Modes of Adaptable Systems with Aftereffect, Nauka, Moscow, 1981. (Russian) MR 641554 (83g:34001)
  • 9. V. Yu. Slyusarchuk, The Absolute Stability of Dynamical Systems with Aftereffect, UDUVGP, Rivne, 2003. (Ukrainian)
  • 10. I. Ya. Spektorskiĭ, A generalization of the constant variation formula for a linear nonhomogeneous stochastic equation, Problemy Upravlen. Inform. 1 (1998), no. 5, 107-112, 158. (Russian) MR 1700664
  • 11. R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. MR 832183 (87e:15001)
  • 12. D. Ya. Khusainov, Estimates for the stability of solutions of systems of functional-differential equations of neutral type, Ukrain. Mat. Zh. 1 (1991), no. 9, 1123-1135; English transl. in Ukrainian Math. J. 1 (1991), no. 9, 1053-1063. MR 1149573 (92k:34102)
  • 13. D. Ya. Khusainov and A. V. Shatyrko, The method of Lyapunov functions in the studies of the stability of differential-functional systems, Kiev University, Kiev, 1997. (Russian) MR 1486825 (2000k:34124)
  • 14. E. F. Tsar'kov, Random Perturbations of Differential-Functional Equations, Zinatne, Riga, 1989. (Russian) MR 1036733 (90m:34164)
  • 15. J. Hale, Theory of Functional Differential Equations, Springer, Berlin, 1978. MR 0508721 (58:22904)
  • 16. I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, Springer, Berlin, 1972. MR 0346904 (49:11625)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 60F15, 60G44

Retrieve articles in all journals with MSC (2000): 60F15, 60G44


Additional Information

I. V. Malyk
Affiliation: Department of Mathematical and Applied Statistics, Faculty for Applied Mathematics, Chernivtsi Fed’kovych National University, Kotsyubyns’kyi Street 2, Chernivtsi 58000, Ukraine
Email: M_Ihor_V@rambler.ru

E. F. Tsar'kov
Affiliation: Department of Probability Theory and Mathematical Statistics, Riga Technical University, Riga, Latvia
Email: carkovs@livas.lv

V. K. Yasyns'kyĭ
Affiliation: Department of Mathematical and Applied Statistics, Faculty for Applied Mathematics, Chernivtsi Fed’kovych National University, Kotsyubyns’kyi Street 2, Chernivtsi 58000, Ukraine
Email: yasinsk@cv.ukrtel.net

DOI: https://doi.org/10.1090/S0094-9000-09-00783-2
Keywords: Stochastic differential equations of neutral type, difference equations, eigenvalues
Received by editor(s): February 20, 2008
Published electronically: December 30, 2009
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society