Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

On excess-of-loss reinsurance


Authors: Hansjörg Albrecher and Jozef L. Teugels
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 79 (2008).
Journal: Theor. Probability and Math. Statist. 79 (2009), 7-22
MSC (2000): Primary 62P05, 62H20
DOI: https://doi.org/10.1090/S0094-9000-09-00787-X
Published electronically: December 30, 2009
MathSciNet review: 2494532
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We discuss a unified framework to analyze the distribution of the number of claims and the aggregate claim sizes in an excess-of-loss reinsurance contract based upon the use of point processes and work out several examples explicitly. We first deal with a single excess-of-loss situation with an extra upper bound on the coverage of individual claims. Subsequently the results are extended to a reinsurance chain with $ k$ partners.


References [Enhancements On Off] (What's this?)

  • 1. H. Albrecher and G. Pirsic, Recursive Evaluation of Compound Distributions Revisited, Preprint, Radon Institute, Austrian Academy of Sciences, 2008.
  • 2. S. Asmussen, B. Højgaard, and M. Taksar, Optimal risk control and dividend distribution policies. Example of excess-of-loss reinsurance for an insurance corporation, Finance Stochast. 4 (1999), 299-324. MR 1779581 (2001i:91072)
  • 3. G. Benktander and C. O. Segerdahl, On the analytical representation of claim distributions with special reference to excess of loss reinsurance, Trans. 16-th Intern. Congress Actuaries, 1960, pp. 626-646.
  • 4. B. Berliner, Correlations between excess of loss reinsurance covers and reinsurance of the $ n$ largest claims, Astin Bulletin 6 (1972), 260-275. MR 0314220 (47:2772)
  • 5. H. Bühlmann, Mathematical Methods in Risk Theory, Springer-Verlag, Heidelberg, 1970. MR 0278448 (43:4178)
  • 6. L. Centeno and O. Simões, Combining quota-share and excess-of-loss treaties on the reinsurance on $ n$ independent risks, Astin Bulletin 21 (1991), 41-55.
  • 7. J. Grandell, Mixed Poisson Processes, Monographs on Statistics and Applied Probability, Chapman & Hall, London, 1997. MR 1463943 (99g:60087)
  • 8. K. T. Hess, A. Liewald, and K. D. Schmidt, An extension of Panjer's recursion, Astin Bulletin 32 (2002), 283-297. MR 1942940 (2003j:62133)
  • 9. R. Kestemont and J. Paris, Sur l'ajustement du nombre des sinistres, Mitt. Ver. Schweiz. Versich. Math. (1985), 157-164.
  • 10. S. A. Klugman, H. H. Panjer, and G. E. Willmot, Loss Models, John Wiley & Sons, New York, 1998. MR 1490300 (99b:62155)
  • 11. J. Kupper, Some aspects of cumulative risk, Astin Bulletin 3 (1963), 85-103.
  • 12. S. A. Ladoucette and J. L. Teugels, Exact and asymptotic properties for a generic reinsurance layer based on an ordered sample size, Scand. Actuar. J. (to appear).
  • 13. T. Mack, Schadensversicherungsmathematik, Verlag Versicherungswirtschaft e.V., Karlsruhe, 1997.
  • 14. A. Mata, Pricing excess of loss reinsurance with reinstatements, Astin Bulletin 30 (2000), 349-368. MR 1963403
  • 15. H. H. Panjer, Recursive evaluation of a family of compound distributions, Astin Bulletin 12 (1981), 22-26. MR 632572 (83c:62170)
  • 16. L. Råde, Limit theorems for thinning of renewal point processes, J. Appl. Probability 9 (1972), 847-851. MR 0359052 (50:11507)
  • 17. S. Rolski, H. Schmidli, V. Schmidt, and J. L. Teugels, Stochastic Processes for Insurance and Finance, Wiley, Chichester, UK, 1999. MR 1680267 (2000a:62273)
  • 18. D. E. A. Sanders, When the wind blows: an introduction to catastrophe excess-of-loss reinsurance, CAS Forum (1995), 157-228.
  • 19. K. J. Schröter, On a family of counting distributions and recursions for related distributions, Scand. Actuarial J. (1990), 161-175. MR 1157783 (93c:62165)
  • 20. H. Sichel, On a family of discrete distributions particularly suited to represent long tailed frequency data, Proc. 3-rd Symp. Math. Statistics, Pretoria, CSIR, 1971.
  • 21. B. Sundt and W. S. Jewell, Further results of recursive evaluation of compound distributions, Astin Bulletin 12 (1981), 27-39. MR 632573 (82m:62235)
  • 22. B. Sundt, On excess of loss reinsurance with reinstatements, Bulletin of the Swiss Association of Actuaries (1991), 51-65. MR 1116983
  • 23. B. Sundt, On allocation of excess-of-loss premiums, Astin Bulletin 22 (1992), 167-176.
  • 24. P. Thyrion, Extension of the collective risk theory, Skand. Aktuaritidskrift 52 Suppl. (1969), 84-98. MR 0350919 (50:3411)
  • 25. H. G. Verbeek, An approach to the analysis of claims experience in motor liability excess-of-loss reinsurance, Astin Bulletin 6 (1972), 195-202.
  • 26. S. Wang and M. Sobrero, Further results on Hesselager's recursive procedure for calculation of some compound distributions, Astin Bulletin 24 (1994), 161-166.
  • 27. G. E. Willmot, The Poisson-inverse Gaussian as an alternative to the negative binomial, Scand. Actuarial J. (1987), 113-127. MR 943576 (89g:62158)
  • 28. G. E. Willmot, Sundt and Jewell's family of discrete distributions, Astin Bulletin 18 (1988), 17-29.
  • 29. G. E. Willmot, On recursive evaluation of mixed Poisson probabilities and related quantities, Scand. Actuarial J. (1993), 114-133. MR 1272853 (94m:62251)
  • 30. G. E. Willmot and H. H. Panjer, Difference equation approaches in evaluation of compound distributions, Insurance: Math. Econom. 6 (1987), 43-56. MR 904968 (88k:62193)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2000): 62P05, 62H20

Retrieve articles in all journals with MSC (2000): 62P05, 62H20


Additional Information

Hansjörg Albrecher
Affiliation: Radon Institute, Austrian Academy of Sciences, Linz, Austria, and University of Linz, Altenbergerstrasse 69, A-4040 Linz, Austria
Email: hansjoerg.albrecher@ricam.oeaw.ac.at

Jozef L. Teugels
Affiliation: EURANDOM, Technische Universiteit Eindhoven, The Netherlands, and Katholieke Universiteit Leuven, Leuven Center for Statistics, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
Email: jef.teugels@wis.kuleuven.be

DOI: https://doi.org/10.1090/S0094-9000-09-00787-X
Keywords: Reinsurance, point processes, thinning, Laplace--Stieltjes transform
Received by editor(s): August 20, 2008
Published electronically: December 30, 2009
Additional Notes: Supported by the Austrian Science Fund Project P18392
Article copyright: © Copyright 2009 American Mathematical Society

American Mathematical Society