Singularity of the second Ostrogradskiĭ random series

Authors:
G. M. Torbin and I. M. Pratsyovyta

Translated by:
N. Semenov

Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom **81** (2010).

Journal:
Theor. Probability and Math. Statist. **81** (2010), 187-195

MSC (2010):
Primary 11K55, 37B10, 60G30

DOI:
https://doi.org/10.1090/S0094-9000-2011-00819-8

Published electronically:
January 24, 2011

MathSciNet review:
2667319

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study properties of the distribution of the second Ostrogradskiĭ series, for which the differences of terms are independent identically distributed random variables. We completely describe the Lebesgue structure of this distribution. In particular, we prove that it cannot be absolutely continuous. We also develop ergodic theory for the second Ostrogradskiĭ expansion. One of the results is that, for almost all (in the sense of Lebesgue measure) real numbers of the unit interval, an arbitrary symbol of an alphabet occurs finitely often in the corresponding Ostrogradskiĭ difference expansion. We also study properties of the dynamical system generated by the one-sided shift transformations of the Ostrogradskiĭ difference representation. It is shown that there is no probability measure that is invariant and ergodic with respect to and absolutely continuous with respect to Lebesgue measure.

**1.**Sergio Albeverio, Oleksandr Baranovskyi, Mykola Pratsiovytyi, and Grygoriy Torbin,*The Ostrogradsky series and related Cantor-like sets*, Acta Arith.**130**(2007), no. 3, 215–230. MR**2365703**, https://doi.org/10.4064/aa130-3-2**2.**Sergio Albeverio, Oleksandr Baranovskyi, Mykola Pratsiovytyi, and Grygoriy Torbin,*The set of incomplete sums of the first Ostrogradsky series and anomalously fractal probability distributions on it*, Rev. Roumaine Math. Pures Appl.**54**(2009), no. 2, 85–115. MR**2519524****3.**S. Albeverio, I. Pratsiovyta, M. Pratsiovytyi, and G. Torbin,*On Bernoulli Convolutions Generated by Second Ostrogradsky Series and their Fine Fractal Properties*, SFB-611 Preprint, vol. 459, Bonn University, 2009.**4.**Kenneth Falconer,*Fractal geometry*, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR**1102677****5.**Oliver Jenkinson and Mark Pollicott,*Computing the dimension of dynamically defined sets: 𝐸₂ and bounded continued fractions*, Ergodic Theory Dynam. Systems**21**(2001), no. 5, 1429–1445. MR**1855840**, https://doi.org/10.1017/S0143385701001687**6.**T. A. Pierce,*On an Algorithm and Its Use in Approximating Roots of Algebraic Equations*, Amer. Math. Monthly**36**(1929), no. 10, 523–525. MR**1521866**, https://doi.org/10.2307/2299963**7.**Fritz Schweiger,*Ergodic theory of fibred systems and metric number theory*, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR**1419320****8.**J. O. Shallit,*Metric theory of Pierce expansions*, Fibonacci Quart.**24**(1986), no. 1, 22–40. MR**825872****9.**K. G. Valēēv and E. D. Zlēbov,*The metric theory of an algorithm of M. V. Ostrogradskiĭ*, Ukrain. Mat. Ž.**27**(1975), 64–69, 142 (Russian). MR**0366855****10.**I. M. Prats'ovita,*Ostrogradskiĭ series of second kind and distributions of their incomplete sums*, Proceedings of the National Dragomanov Pedagogical University, Physics and Mathematics**7**(2006), 174-189. (Ukrainian)**11.**M. V. Prats'ovitiĭ,*Fractal Approach to the Studies of Singular Distributions*, National Dragomanov Pedagogical University, Kyiv, 1998. (Ukrainian)**12.**M. V. Prats′ovitiĭ and O. M. Baranovs′kiĭ,*Properties of distributions of random variables with independent differences of consecutive elements of the Ostrogradskiĭ series*, Teor. Ĭmovīr. Mat. Stat.**70**(2004), 131–143 (Ukrainian, with Ukrainian summary); English transl., Theory Probab. Math. Statist.**70**(2005), 147–160. MR**2110871**, https://doi.org/10.1090/S0094-9000-05-00638-1**13.**E. Ya. Remez,*On series with alternating sign which may be connected with two algorithms of M. V. Ostrogradskiĭ for the approximation of irrational numbers*, Uspehi Matem. Nauk (N.S.)**6**(1951), no. 5(45), 33–42 (Russian). MR**0044585****14.**A. Ja. Hinčin,*\cyr Tsepnye drobi*, 4th ed., “Nauka”, Moscow, 1978 (Russian). MR**514845**

A. Ya. Khinchin,*Continued fractions*, The University of Chicago Press, Chicago, Ill.-London, 1964. MR**0161833**

Retrieve articles in *Theory of Probability and Mathematical Statistics*
with MSC (2010):
11K55,
37B10,
60G30

Retrieve articles in all journals with MSC (2010): 11K55, 37B10, 60G30

Additional Information

**G. M. Torbin**

Affiliation:
Department of Higher Mathematics, Institute for Physics and Mathematics, National Dragomanov Pedagogical University, Pirogova Street 9, Kyiv 01030, Ukraine

Email:
torbin@imath.kiev.ua

**I. M. Pratsyovyta**

Affiliation:
Department of Higher Mathematics, Institute for Physics and Mathematics, National Dragomanov Pedagogical University, Pirogova Street 9, Kyiv 01030, Ukraine

Email:
lightsoul2008@gmail.com

DOI:
https://doi.org/10.1090/S0094-9000-2011-00819-8

Keywords:
The second Ostrogradskiĭ series,
singular probability measures,
symbolic dynamics

Received by editor(s):
November 2, 2009

Published electronically:
January 24, 2011

Additional Notes:
The research of the first author is supported by the projects DFG 436 UKR 113/80 and DFG 436 113/97 and the Alexander von Humboldt Foundation

The research of the second author is supported by the projects DFG 436 UKR 113/80 and DFG 436 113/97

Article copyright:
© Copyright 2011
American Mathematical Society