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WEAK CONVERGENCE OF SEQUENCES

FROM FRACTIONAL PARTS OF RANDOM VARIABLES

AND APPLICATIONS
UDC 519.21

RITA GIULIANO

Abstract. We prove results concerning the weak convergence to the uniform distri-
bution on [0, 1] of sequences (Zn)n≥1 of the form Zn = Yn (mod 1) = {Yn}, where
(Yn)n≥1 is a general sequence of real random variables. Applications are given: (i) to
the case of partial sums of (i.i.d.) random variables having a distribution belonging
to the domain of attraction of a stable law; (ii) to the case of sample maxima of i.i.d.
random variables.

1. Introduction

Let (Yn)n≥1 be a sequence of real random variables; we are interested in the se-
quence (Zn)n≥1 where, for every integer n ≥ 1, Zn = Yn (mod 1) (= {Yn}). A variety
of results concerning the convergence in distribution of the sequence (Zn)n≥1 have been
proved in past years in the case in which Yn is the n-th partial sum of i.i.d. random vari-
ables (Xn)n≥1 taking values in [0, 1] (or, more generally, in a compact Hausdorff group).
Roughly speaking, such types of results state that the partial sums of “nice” random
variables (Xn)n≥1 converge in distribution to the uniform distribution on [0, 1] (in the
more general case, to the Haar measure of the group). See for instance the paper [10] for
an exhaustive list of references on the subject.

On the other hand, little attention seems to have been paid to other kinds of sequences
(Yn)n≥1 (for instance to partial sums of independent random variables (Xn)n≥1 not
identically distributed, or not taking values in [0, 1], or to partial sums of dependent
random variables (Xn)n≥1, or even to more general sequences).

The present paper is an attempt to fill in the gap: here we consider the case of a
general real random sequence (Yn)n≥1, and our aim is twofold:

(i) to give necessary and sufficient conditions for the weak convergence of (Zn)n≥1

to the uniform distribution on [0, 1] using some Fourier analysis; we obtain a “Weyl
criterion for probability laws on R”, i.e., Theorem 2.1 of Section 2. Section 3 contains
some applications, enlightening the fact that our result can be applied to more general
cases than the classic one of partial sums of i.i.d. (Xn)n≥1.

(ii) to give sufficient conditions for the weak convergence of (Zn)n≥1 to the uniform
distribution on [0, 1] in terms of the densities of the involved variables (Yn)n≥1 (assumed
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to be absolutely continuous). This is done in Section 4; our first result in this section
(Theorem 4.1) relies once more on the Weyl criterion of Section 2, while the second result
(Theorem 4.5) is somehow of a different nature, the main feature used there being a sort
of “generalized unimodality” of the densities.

Section 5 contains some applications of the results of Section 4 (i) to the case of
partial sums of (i.i.d.) random variables having a distribution belonging to the domain of
attraction of a stable law; (ii) to the case of running maxima of i.i.d. random variables.

As is well known, the problem of the convergence of partial sums of random variables
to the uniform distribution on [0, 1] is equivalent to the problem of the convergence of
partial products of random variables to the so-called Benford’s Law (see the introduction
of [10] for more details on the history and the practical relevance of this topic). Our wider
point of view sheds some new light on the subject, showing that the phenomenon of the
convergence to Benford’s Law is more general than expected.

2. The Weyl criterion

Theorem 2.1 (Weyl criterion for probability laws on R). For every integer n ≥ 1, let Yn

be a random variable on the probability space (Ω,A,P), having law μn. For every integer
h ∈ Z, let μ̂n(h) be the h-th Fourier coefficient

μ̂n(h) =

∫ +∞

−∞
e2iπhx μn(dx).

Then the sequence (Zn)n≥1, where Zn = Yn (mod 1) = {Yn} converges in distribution to
the uniform distribution on [0, 1] if and only if for every integer h ∈ Z, h �= 0, we have

lim
n→∞

μ̂n(h) = 0.

Proof. Let νn be the law of Zn (having support in the interval [0, 1]). For every integer

k ∈ Z, denote by μ
(k)
n the law of Yn − k. The obvious relation

P(Zn ≤ x) =

+∞∑
k=−∞

P(0 ≤ Yn − k ≤ x)

can be written as

νn =
+∞∑

k=−∞
μ(k)
n ,

which implies, for every integer h ∈ Z,

ν̂n(h) =

∫ 1

0

e2iπhx νn(dx)

=
+∞∑

k=−∞

∫ 1

0

e2iπhx μ(k)
n (dx)

=
+∞∑

k=−∞

∫ k+1

k

e2iπh(y−k) μn(dy)

=

+∞∑
k=−∞

∫ k+1

k

e2iπhy μn(dy)

=

∫ +∞

−∞
e2iπhy μn(dy) = μ̂n(h).

Hence the statement follows from the following proposition. �
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Proposition 2.2 (Weyl criterion for probability laws on [0, 1]). For every integer n ≥ 1,
let Zn be a random variable on the probability space (Ω,A,P), having law νn with support
in [0, 1]. For every integer h ∈ Z, let ν̂n(h) be the h-th Fourier coefficient

ν̂n(h) =

∫ 1

0

e2iπhx νn(dx).

Then the sequence (Zn)n≥1 converges in distribution to the uniform distribution on [0, 1]
if and only if for every integer h ∈ Z, h �= 0, we have

(1) lim
n→∞

ν̂n(h) = 0.

Proof. The proof is sketched in [1, p. 50]. We detail it for the reader’s convenience. The
convergence in distribution of νn to the uniform distribution on [0, 1] is equivalent to the
following condition:

(H) for every complex-valued continuous function f defined on R we have

lim
n→∞

∫ 1

0

f(x) νn(dx) =

∫ 1

0

f(x) dx.

For f(x) = e2iπhx, condition H becomes (1).
Conversely, assume that (1) holds for every h ∈ Z \ {0} and let us prove H. Let f be

a fixed complex-valued continuous function. We can repeat almost verbatim the proof
of the sufficiency for the classical Weyl criterion for uniform distributed sequences of
numbers (following [9, p. 7], for instance): let ε > 0 be an arbitrary positive number; by
the Weierstrass approximation theorem, there exists a trigonometric polynomial Ψ(x),
i.e., a finite linear combination of functions of the type e2iπhx, h ∈ Z, such that

sup
0≤x≤1

|f(x)−Ψ(x)| ≤ ε.

We may assume that

(2)

∫ 1

0

Ψ(x) dx = 0;

hence, by (1),

(3)

∫ 1

0

Ψ(x) νn(dx) → 0, n → ∞.

Since, for n ≥ n0,∣∣∣∣
∫ 1

0

f(x)dx−
∫ 1

0

f(x) νn(dx)

∣∣∣∣
≤

∣∣∣∣
∫ 1

0

(
f(x)−Ψ(x)

)
dx

∣∣∣∣+
∣∣∣∣
∫ 1

0

Ψ(x)dx−
∫ 1

0

Ψ(x)νn(dx)

∣∣∣∣
+

∣∣∣∣
∫ 1

0

(
f(x)−Ψ(x)

)
νn(dx)

∣∣∣∣
≤ 2ε+

∣∣∣∣
∫ 1

0

Ψ(x)dx−
∫ 1

0

Ψ(x) νn(dx)

∣∣∣∣ ,
the result follows from (2), (3) and the arbitrariness of ε. �
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3. Some applications of the Weyl criterion

(a) A particular case of Theorem 2.1 is the following result.

Theorem 3.1. Let (Xn)n≥1 be a sequence of independent random variables defined on
(Ω,A,P), and let λn be the law of Xn (we do not assume that the (Xn) are identically
distributed). Put Yn = X1+· · ·+Xn. Then the sequence (Zn)n≥1 converges in distribution
to the uniform distribution on [0, 1] if and only if for every integer h ∈ Z, h �= 0, we have

lim
n→∞

λ̂1(h) · · · λ̂n(h) = 0.

Remark 3.2. The interest in Theorem 3.1 relies in the fact that the variables of the basic
sequence (Xn)n≥1 are not assumed to be identically distributed with values in [0, 1]: this
particular case is considered for instance in [4, Theorem 3, p. 274].

Remark 3.3. For every function f defined and integrable on [0, 1] and for every h ∈ Z,
put

f̂(h) =

∫ 1

0

e2iπhxf(x) dx.

In the paper [12] the following theorems are proved:

Theorem 3.3.1 (Central Limit Theorem modulo 1). Let (Xn)n≥1 be a sequence of
independent absolutely continuous random variables defined on (Ω,A,P) and with values
in [0, 1] (not necessarily identically distributed); for each n, let fn be a density of Xn.
Put Yn = X1 + · · · + Xn. A necessary and sufficient condition for the sequence of the
densities of (Zn)n≥1 to converge in L1([0, 1]) to the uniform density in [0, 1] as n → ∞
is that, for each h ∈ Z, h �= 0, we have limn→∞ f̂1(h) · · · f̂n(h) = 0.

Theorem 3.3.2. Let (Xn)n≥1 be a sequence of independent discrete random variables
defined on (Ω,A,P) and with values in [0, 1] (not necessarily identically distributed), with
densities

(4) fn(x) =

rn∑
k=1

wk,nδαk,n
(x), wk,n > 0,

rn∑
k=1

wk,n = 1

(where δα(x) denotes the Dirac measure in α). Assume that there is a finite set A ⊂ [0, 1]
such that all αk,n ∈ A. Put Yn = X1 + · · · + Xn as above. A necessary and sufficient
condition for the sequence (Zn)n≥1 to converge in distribution to the uniform distribution

as n → ∞ is that, for each h ∈ Z, h �= 0, we have limn→∞ f̂1(h) · · · f̂n(h) = 0.

Notice that f̂1(h) · · · f̂n(h) is the h-th Fourier coefficient of the law of Yn.
Theorem 3.1 concerns convergence in distribution only (and not L1-convergence, as

Theorem 3.3.1); hence from this point of view (the sufficiency part of) Theorem 3.3.1
gives more information than Theorem 3.1.

On the other hand, Theorem 3.1 is more general than Theorem 3.3.1 in the sense
that we need not assume that the involved variables Xn are absolutely continuous and
with values in [0, 1]; hence Theorem 3.3.2 is just a particular case of Theorem 3.1: no
assumptions on the densities fn (such as (4)) are needed.

(b) Let α ∈ (0, 2] be fixed. For every integer n, let Yn be a random variable hav-
ing stable density with exponent α. We recall (see for instance [4, p. 570]) that the
characteristic function of the law μn of Yn has the form

φn(t) =

∫ +∞

−∞
eitx μn(dx) = eψn(t),
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where

(5) ψn(t) = |t|αCn
Γ(3− α)

α(α− 1)

[
cos

πα

2
± i(pn − qn) sin

πα

2

]
if 0 < α < 1 or 1 < α ≤ 2, while for α = 1,

(6) ψn(t) = −|t|Cn

[π
2
± i(pn − qn) log |t|

]
.

In both of the above formulas the upper sign applies for t > 0, the lower for t < 0; Cn

are positive constants, while pn ≥ 0, qn ≥ 0 and pn + qn = 1.
Noticing that μ̂n(h) = φn(2πh) = eψn(2πh) and that Re(ψn(t)) < 0 for t �= 0, from

Theorem 3.1 we deduce the following.

Corollary 3.4. Let (Yn)n≥1 be a sequence of random variables having stable density with
the same exponent α. Then (Zn)n≥1 converges in distribution to the uniform distribution
on [0, 1] if and only if limn→∞ Cn = +∞, where the Cn are the norming constants defined
in (5) and (6).

(c) Let α ∈ (0, 2], β > 0 be fixed. For every integer n, let Yn be a random variable
having characteristic function

(7) φn(t) =
λ
α/β
n

(λα
n + |t|α)1/β .

For the case λn = 1 this characteristic function has been studied in [2] and the corre-
sponding distribution is a generalization of the so-called Linnik’s distribution (which is
the case β = 1 in (7); see [10]). From (7) we have, for h ∈ Z,

μ̂n(h) = φn(2πh) =
λ
α/β
n

(λα
n + |2πh|α)1/β ,

and, for h �= 0, μ̂n(h) → 0 as n → ∞ if and only if λn → 0 as n → ∞.

Corollary 3.5. Let (Yn)n≥1 be a sequence of random variables such that, for each n, Yn

has its law determined by the characteristic function (7) (with parameters α and β not
depending on n). Then the sequence (Zn)n≥1 converges in distribution to the uniform
distribution on [0, 1] if and only if limn→∞ λn = 0.

4. More sufficient conditions

In the present section we prove two results (Theorem 4.1 and Theorem 4.5) which pro-
vide some sufficient conditions for the weak convergence of fractional parts of a sequence
(Yn)n≥1. Theorem 4.1 relies once more on the Weyl criterion, while the hypotheses used
in Theorem 4.5 are mostly on the set of the densities of (Yn)n≥1; the Weyl criterion seems
to be of no utility in this situation.

Theorem 4.1. Let (Yn)n≥1 be a sequence of absolutely continuous random variables
defined on (Ω,A,P). Assume that there exists a sequence of positive numbers (an)n≥1

with limn→∞ an = +∞ and such that, denoting by fn the density of Yn/an, the sequence
(fn)n≥1 converges uniformly to a density f , as n → ∞. Then (Zn)n≥1 converges in
distribution to the uniform distribution on [0, 1].

Proof. We start by proving the particular case in which fn = f for every integer n.

Lemma 4.2. Let (Yn)n≥1 be a sequence of absolutely continuous random variables de-
fined on (Ω,A,P). Assume that there exists a sequence of positive numbers (an)n≥1 with
limn→∞ an = +∞ and such that, for every n, Yn/an has the same density f . Then
(Zn)n≥1 converges in distribution to the uniform distribution on [0, 1].
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Proof of Lemma 4.2. Yn has the density

(8) gn(x) =
1

an
f

(
x

an

)
.

For h ∈ Z, the h-th Fourier coefficients of gn are given by

ĝn(h) =

∫ +∞

−∞
e2iπhxgn(x) dx

=

∫ +∞

−∞
e2iπhx

1

an
f

(
x

an

)
dx

=

∫ +∞

−∞
e2iπhtanf(t) dt = φ(2πhan),

where φ denotes the characteristic function of f . Since f is integrable, the Riemann–
Lebesgue Theorem (see [4, Lemma 3, p. 513]) assures that, for h �= 0,

lim
n→∞

ĝn(h) = lim
t→±∞

φ(t) = 0,

and the conclusion follows from the Weyl criterion of Section 2. �
Now the proof of the general case carries over easily; in fact, denote by hn the density

of Yn/an, i.e.,

(9) hn(x) =
1

an
fn

(
x

an

)
.

Then, as above,

ĥn(h) =

∫ +∞

−∞
e2iπhtanfn(t) dt

≤ |ĝn(h)|+
∫ +∞

−∞
|fn(t)− f(t)| dt,

and the conclusion follows from Scheffé’s Theorem (see [2, p. 218]) and Lemma 4.2, by
means of the Weyl criterion (Theorem 2.1). �
Remark 4.3. Assume that f is bounded and put

Δn = sup
x∈R

|fn(x)− f(x)|.

From the relation

0 ≤ hn(x) ≤
1

an

∣∣∣∣fn( x

an

)
− f

( x

an

)∣∣∣∣+ 1

an
f
( x

an

)
≤ ‖f‖∞ +Δn

an
for all x ∈ R,

it follows that the sequence (hn)n≥1 converges uniformly to 0.

Let (Yn)n≥1 be a sequence of absolutely continuous random variables, such that the
corresponding densities (hn)n≥1 converge uniformly to 0. In view of Remark 4.3, some
natural questions arise:

(i) Does the sole condition of uniform convergence to 0 of the densities (hn)n≥1 suffice
to guarantee that (Zn)n≥1 converges weakly? (Notice that the Weyl criterion is not useful
in this case, since a priori on R we have no dominated convergence to 0 for the functions
x 
→ e2iπhxhn(x)). The answer is negative, as can be expected and as Example 4.4(b)
here below shows.

(ii) If (Zn)n≥1 converges weakly, is the limit the uniform distribution on [0, 1] in every
case? Once more, the answer is negative, as proved by Example 4.4(a).

(iii) Besides those of Theorem 4.1, are there any other sets of assumptions that, along
with the condition of uniform convergence to 0 of the densities (hn)n≥1, guarantee that
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(Zn)n≥1 converges weakly to the uniform distribution on [0, 1]? We give an answer to
this question in Theorem 4.5.

Example 4.4. (a) For every integer n ≥ 1, put

gn(t) =
2

n

2n∑
k=1

{
(t− k)1[k,k+1/2](t)− (t− k − 1)1(k+1/2,k+1](t)

}
.

It is easy to check that gn is a density. Moreover, for 0 ≤ x ≤ 1
2 ,

+∞∑
k=−∞

∫ k+x

k

gn(t) dt =

2n∑
k=1

∫ k+x

k

2

n
(t− k) dt =

2n∑
k=1

2

n

x2

2
= 2x2,

while, for 1
2 ≤ x ≤ 1,

+∞∑
k=−∞

∫ k+x

k

gn(t) dt =

2n∑
k=1

(∫ k+1/2

k

2

n
(t− k) dt−

∫ k+x

k+1/2

2

n
(t− k − 1) dt

)

=

2n∑
k=1

2

n

(
1

4
− (x− 1)2

2

)
= 1− 2(x− 1)2.

Hence we have obtained the limit distribution function

F (x) = 2x2 for 0 ≤ x ≤ 1

2
, F (x) = 1− 2(x− 1)2 for

1

2
≤ x ≤ 1.

(b) It is now easy to construct a sequence (hn)n≥1 of densities such that (Zn)n≥1 does
not converge. Let gn be the density of point (a) and denote by fn the Cauchy density
with parameter n, i.e.,

fn(t) =
n

π(n2 + t2)
, t ∈ R.

We know from Theorem 2.1 (or Theorem 4.1) that

lim
n→∞

+∞∑
k=−∞

∫ k+x

k

fn(t) dt = x,

while, from the previous point (a),

lim
n→∞

+∞∑
k=−∞

∫ k+x

k

gn(t) dt = F (x).

Hence we can take

hn(t) = gn(t) for even n, fn(t) = hn(t) for odd n.

Example 4.4 suggests that we may obtain the uniform distribution on [0, 1] as the
weak limit of (Zn)n≥1 if the corresponding densities (hn)n≥1 have some property not too
far from unimodality. In fact, we are proving the following result.

Theorem 4.5. Let (Yn)n≥1 be a sequence of absolutely continuous random variables
defined on (Ω,A,P) such that, for every integer n, Yn is absolutely continuous with
density gn. Assume that gn is continuous on its support (supposed to be a bounded or
unbounded interval in R) and that, for every integer n, there exists an interval [an, bn]
such that gn is increasing on (−∞, an] and decreasing on [bn,+∞). Then

sup
0≤x≤1

|P(Zn ≤ z)− x| ≤
∫ bn+2

an−1

gn(t) dt.
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If in addition

(10) lim
n→+∞

∫ bn+2

an−1

gn(t) dt = 0,

then the sequence (Zn)n≥1 converges in distribution to the uniform distribution on [0, 1].

Remark 4.6. (i) Assumption (10) is not valid for the sequence (gn)n≥1 of Example 4.4.
(ii) Assumption (10) is verified if (gn)n≥1 converges uniformly to 0 as n → ∞ and

C
.
= supn∈N(bn−an) < +∞ (in particular the second condition is trivial if gn is unimodal

for each n).

Remark 4.7. The idea of using the property of unimodality of the densities is not new.
It traces back to Feller (see [4], pp. 62–63 (b), Poincaré roulette problem). Also, it has
been recently used in [6]. Our Theorem 4.5 is more general than Theorem 1 of [6] since
our bound is in terms of the integral of gn (on a suitable interval), so that gn need not
be unimodal (as assumed in Theorem 1 of [6]), or even have a finite number of modes.

Proof. With no loss of generality, we may assume that an and bn are integers, with
an + 1 ≤ bn, for every n. We can write

P(Zn ≤ x) =
+∞∑

k=−∞

∫ k+x

k

gn(t) dt

= x

{
+∞∑

k=bn+1

gn(ξk) +

an−1∑
k=−∞

gn(ξk)

}
+

bn∑
k=an

∫ k+x

k

gn(t) dt

for a suitable sequence of numbers (ξk)k∈Z\[an,bn], where, for each integer k, ξk ∈ [k, k+x]
(recall that gn is continuous). The function gn is decreasing on the half-line x ≥ bn and
increasing on the half-line x ≤ an. For k ≥ bn+1 we have bn+1 ≤ k ≤ ξk ≤ k+1; hence

(11)

+∞∑
k=bn+2

gn(k) =

+∞∑
k=bn+1

gn(k + 1) ≤
+∞∑

k=bn+1

gn(ξk) ≤
+∞∑

k=bn+1

gn(k).

On the other hand, for k ≤ an − 1 we have k ≤ ξk ≤ k + x ≤ k + 1 ≤ an, so that

(12)

an−1∑
k=−∞

gn(k) ≤
an−1∑
k=−∞

gn(ξk) ≤
an−1∑
k=−∞

gn(k + 1) =

an∑
k=−∞

gn(k).

It is easy to see that

+∞∑
k=bn+1

gn(k) ≤
∫ +∞

bn

gn(t) dt,

an∑
k=−∞

gn(k) ≤
∫ an+1

−∞
gn(t) dt,(13)

an−1∑
k=−∞

gn(k) ≥
∫ an−1

−∞
gn(t) dt,

+∞∑
k=bn+2

gn(k) ≥
∫ +∞

bn+2

gn(t) dt;(14)

from relations (11), (12), (13) we obtain

(15)

P(Zn ≤ x) ≤ x

(∫ an+1

−∞
gn(t) dt+

∫ +∞

bn

gn(t) dt

)
+

bn∑
k=an

∫ k+x

k

gn(t) dt

= x

(
1−

∫ bn

an+1

gn(t) dt

)
+

bn∑
k=an

∫ k+x

k

gn(t) dt;
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from relations (11), (12), (14) we obtain

(16)

P(Zn ≤ x) ≥ x

(∫ an−1

−∞
gn(t) dt+

∫ +∞

bn+2

gn(t) dt

)
+

bn∑
k=an

∫ k+x

k

gn(t) dt

= x

(
1−

∫ bn+2

an−1

gn(t) dt

)
+

bn∑
k=an

∫ k+x

k

gn(t) dt.

Since

0 ≤
bn∑

k=an

∫ k+x

k

gn(t) dt ≤
∫ bn+1

an

gn(t) dt,

the statement follows from (15) and (16). �

5. Applications to partial sums and sample maxima

(a) Let (Xn)n≥1 be a sequence of i.i.d. random variables, having mean μ = 0 and
belonging to the domain of attraction of a stable distribution F of index α, 1 < α ≤ 2.
This means that there exists a constant a > 0 such that, putting Yn = X1 + · · · +Xn,
the random variables (anr)−1Yn converge in distribution to F , where r = α−1. Assume
that the law of X1 has a characteristic function φ such that |φ|m is integrable for some
integer m. From Theorem 2 of [8, p. 227] we know that (anr)−1Yn has a density fn and
that the sequence (fn)n≥1 converges uniformly to the density f of F . Hence

Corollary 5.1. Let (Xn)n≥1 be a sequence of centered random variables, belonging to
the domain of attraction of a stable law with index α ∈ (1, 2] and such that the law
of X1 has a characteristic function φ such that |φ|m is integrable for some integer m.
Put Yn = X1 + · · ·+Xn. Then (Zn)n≥1 converges weakly to the uniform distribution on
[0, 1].

Remark 5.2. In the recent paper [10] it has been proved that, provided some further
assumptions hold, the densities (fn) of (anr)−1Yn converge uniformly to the density f
of F even for α ∈ (0, 1]. Hence our corollary is in force also in these cases.

Remark 5.3. In the paper [11, p. 10] the authors remark that their proof of the Central
Limit Theorem modulo 1 doesn’t require the finiteness of the variance of X1. In the
light of our application to distributions belonging to the domain of attraction of a stable
law, this is quite clear: apart from the case α = 2 (i.e., the case of the Central Limit
Theorem), such distributions don’t have finite variance (see the lemma in [4, p. 578]).

(b) Let (Xn)n≥1 be a sequence of centered random variables, with finite variances.
Again let Yn = X1+· · ·+Xn. It may happen that, though no assumption of independence
for the basic sequence (Xn)n≥1 is made, nevertheless one can show, under some suitable
assumptions, that there exists a sequence (an) with limn→∞ an = +∞, such that the
random variable Yn/an has a density fn which converges uniformly to the Gaussian
N (0, 1) density

η(x) =
1√
2π

e−x2/2

(see for instance the paper [13]). Thus we have the following result.

Corollary 5.4. Let (Xn)n≥1 be a sequence of random variables, centered and with finite
variances. Assume that there exists a sequence (an) with limn→∞ an = +∞, such that
the random variable Yn/an has a density fn which converges uniformly to the Gaussian
N (0, 1) density. Then (Zn)n≥1 converges weakly to the uniform distribution on [0, 1].
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(c) Let (Xn)n≥1 be a sequence of i.i.d. random variables, with common distribution F .
Put Yn = max(X1, . . . , Xn). If, for some choice of an and bn, we have

lim
n→∞

P
(
a−1
n Yn + bn ≤ x

)
= G(x) for all x ∈ R,

then F is said to be in the max domain of attraction of G. It is a classical fact (see [6])
that, if this is the case, G must be one of the following three extreme value types:

φα(x) = exp(−x−α), x ≥ 0, α > 0,

Ψα(x) = exp
(
− (−x)α

)
, x ≤ 0, α > 0,

Λ(x) = exp
(
− e−x

)
, x ∈ R.

In [5] the following result is proved (Theorem 2, (a); see also [12], Lemma 1, from which
we take the present formulation):

Theorem 5.5. Suppose F is absolutely continuous with bounded density f , which is
assumed to be positive for all sufficiently large x. Let fn denote the density of Yn/an,
where an is defined by n−1 = − logF (an). If for some α > 0,

lim
x→+∞

xf(x)

1− F (x)
= α,

then as n → ∞, fn(x) → φ′
α(x) uniformly in x.

It is not difficult to verify that limn→∞ an = +∞. Thus we have

Corollary 5.6. Under the hypotheses of the above Theorem 5.5, the sequence (Zn)n≥1

converges in distribution to the uniform distribution on [0, 1].
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