Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Properties of trajectories of a multifractional Rosenblatt process


Author: Georgiĭ Shevchenko
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 83 (2010).
Journal: Theor. Probability and Math. Statist. 83 (2011), 163-173
MSC (2010): Primary 60G22; Secondary 60J55, 60B10
DOI: https://doi.org/10.1090/S0094-9000-2012-00849-1
Published electronically: February 2, 2012
MathSciNet review: 2768856
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Rosenblatt process and its multifractional counterpart are considered. For a multifractional Rosenblatt process, we investigate the local properties of its trajectories, namely the continuity and localizability. We prove the existence of square integrable local times for both processes.


References [Enhancements On Off] (What's this?)

  • 1. J. Albin, A note on Rosenblatt distributions, Stat. Probab. Lett. 40 (1998), no. 1, 83-91. MR 1650532 (2000b:60101)
  • 2. S. M. Berman, Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Math. Soc. 137 (1969), 277-299. MR 0239652 (39:1009)
  • 3. R. Dobrushin and P. Major, Non-central limit theorems for non-linear functionals of Gaussian fields, Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 27-52. MR 550122 (81i:60019)
  • 4. A. Garsia and E. Rodemich, Monotonicity of certain functionals under rearrangement, Ann. Inst. Fourier 24 (1974), no. 2, 67-116. MR 0414802 (54:2894)
  • 5. Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lecture Notes in Mathematics, vol. 1929, Springer, Berlin, 2008. MR 2378138 (2008m:60064)
  • 6. G. Peccati and M. S. Taqqu, Wiener Chaos: Moments, Cumulants and Diagrams. A Survey with Computer Implementation, Springer-Verlag, Italy, Milan-Dordrecht-Heidelberg-London-New York, 2011. MR 2791919
  • 7. V. Pipiras, Wavelet-type expansion of the Rosenblatt process, J. Fourier Anal. Appl. 10 (2004), no. 6, 599-634. MR 2105535 (2005i:60076)
  • 8. M. Rosenblatt, Independence and dependence, Proc. 4th Berkeley Symp. Math. Stat. Probab., vol. 2, 1961, pp. 431-443. MR 0133863 (24:A3687)
  • 9. G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Stochastic Modeling, Chapman & Hall, New York, 1994. MR 1280932 (95f:60024)
  • 10. M. S. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheor. Verw. Geb. 31 (1975), 287-302. MR 0400329 (53:4164)
  • 11. M. S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrscheinlichkeitstheor. Verw. Geb. 50 (1979), 53-83. MR 550123 (81i:60020)
  • 12. S. Torres and C. A. Tudor, Donsker type theorem for the Rosenblatt process and a binary market model, Stochastic Anal. Appl. 27 (2009), no. 3, 555-573. MR 2523182 (2010g:60075)
  • 13. C. A. Tudor, Analysis of the Rosenblatt process, ESAIM, Probab. Stat. 12 (2008), 230-257. MR 2374640 (2008m:60067)
  • 14. Svante Janson, Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics, vol. 129, Cambridge University Press, Cambridge, 1997. MR 1474726 (99f:60082)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G22, 60J55, 60B10

Retrieve articles in all journals with MSC (2010): 60G22, 60J55, 60B10


Additional Information

Georgiĭ Shevchenko
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue 2, Kiev 03127, Ukraine
Email: zhora@univ.kiev.ua

DOI: https://doi.org/10.1090/S0094-9000-2012-00849-1
Keywords: Rosenblatt process, multiple stochastic integral, local time, localizability, fractional Brownian motion
Received by editor(s): August 28, 2010
Published electronically: February 2, 2012
Additional Notes: The author is grateful to the European Commission for a support in the framework of the program “Marie Curie Actions”, Grant # PIRSES-GA-2008-230804
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society