Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Extended Poisson equation for weakly ergodic Markov processes


Authors: A. Yu. Veretennikov and A. M. Kulik
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 85 (2011).
Journal: Theor. Probability and Math. Statist. 85 (2012), 23-39
MSC (2010): Primary 60H10, 60J10
DOI: https://doi.org/10.1090/S0094-9000-2013-00871-0
Published electronically: January 11, 2013
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Solvability conditions for a Poisson equation with an extended generator of a general Markov process are obtained. The predictable part in the Doob-Meyer decomposition is described for a process of the form $ g(X(t), Y(t))$, where $ Y$ is a solution of a stochastic equation with the coefficients depending on $ X$ and where the function $ g=g(x,y)$ is defined as a family of solutions of the Poisson equation.


References [Enhancements On Off] (What's this?)

  • 1. N. Abourashchi and A. Yu. Veretennikov, On stochastic averaging and mixing, Theory Stoch. Process. 16(32) (2010), no. 1, 111-129. MR 2779833 (2012a:60188)
  • 2. R. Z. Khas'minskiĭ, A limit theorem for the solutions of differential equations with random right-hand sides, 11 (1966), no. 3, 444-462; English transl. in Theor. Probability Appl. 11 (1966), no. 3, 390-406. MR 0203789 (34:3637)
  • 3. A. N. Borodin, A limit theorem for the solutions of differential equations with a random right-hand side, Teor. Verojatnost. i Primenen. 22 (1977), no. 3, 498-512; English transl. in Theor. Probability Appl. 22 (1977), no. 3, 482-497. MR 0517995 (58:24546)
  • 4. V. V. Sarafyan and A. V. Skorokhod, Dynamical systems with fast switchings, Teor. Verojatnost. i Primenen. 32 (1987), no. 4, 658-669; English transl. in Theory Probab. Appl. 32 (1987), no. 4, 595-607. MR 927247 (89f:60064)
  • 5. S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York, 1986. MR 838085 (88a:60130)
  • 6. V. S. Korolyuk and N. Limnios, Stochastic Systems in Merging Phase Space, World Scientific, New Jersey, 2005. MR 2205562 (2007a:60004)
  • 7. E. Pardoux and A. Yu. Veretennikov, On Poisson equation and diffusion approximation 1, Ann. Probab. 29 (2001), 1061-1085. MR 1872736 (2002j:60120)
  • 8. A. Yu. Veretennikov, Bounds for the mixing rates in the theory of stochastic equations, Theory Probab. Appl. 32 (1987), 273-281. MR 902757 (89b:60144)
  • 9. A. Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations, Stoch. Process. Appl. 70 (1997), 115-127. MR 1472961 (99k:60158)
  • 10. S. A. Klokov and A. Yu. Veretennikov, Sub-exponential mixing rate for a class of Markov chains, Math. Comm. 9 (2004), 9-26. MR 2076227 (2005f:60148)
  • 11. D. Down, S. P. Meyn, and R. L. Tweedie, Exponential and uniform ergodicity of Markov processes, Ann. Probab. 23 (1995) no. 4, 1671-1691. MR 1379163 (97c:60181)
  • 12. R. Douc, G. Fort, and A. Guillin, Subgeometric rates of convergence of $ f$-ergodic strong Markov processes, Stoch. Process. Appl. 119 (2009), no. 3, 897-923. MR 2499863 (2010j:60184)
  • 13. A. M. Kulik, Exponential ergodicity of the solutions to SDE's with a jump noise, Stoch. Proc. Appl. 119 (2009), 602-632. MR 2494006 (2010i:60176)
  • 14. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. MR 1207136 (95g:60073)
  • 15. S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise (an Evolution Equation Approach), Cambridge University Press, Cambridge, 2007. MR 2356959 (2009b:60200)
  • 16. M. Hairer and J. and Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math. 164 (2006), 993-1032. MR 2259251 (2008a:37095)
  • 17. M. Hairer and J. Mattingly, Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, Ann. Probab. 36 (2008), 2050-2091. MR 2478676 (2010i:35295)
  • 18. T. Komorowski, Sz. Peszat, and T. Szarek, On ergodicity of some Markov processes, Ann. Probab. 38 (2010), 1401-1443. MR 2663632 (2011f:60148)
  • 19. T. Szarek, The uniqueness of invariant measures for Markov operators, Studia Math. 189 (2008), 225-233. MR 2457488 (2009m:60166)
  • 20. M. Hairer, J. C. Mattingly, and M. Scheutzow, Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations, Prob. Theory Rel. Fields (2009), DOI 10.1007/s00440-009-0250-6.
  • 21. E. Pardoux and A. Yu. Veretennikov, On Poisson equation and diffusion approximation 2, Ann. Prob. 31 (2003), 1166-1192. MR 1988467 (2004d:60156)
  • 22. A. M. Kulik and A. Yu. Veretennikov, On extended Poisson equation and diffusion approximation (2011). (to appear) MR 2933700 (2012m:60128)
  • 23. H. Kunita, Absolute continuity of Markov processes and generators, Nagoya Math. J. 36 (1969), 1-26. MR 0250387 (40:3626)
  • 24. D. Revuz and M. and Yor, Continuous Martingales and Brownian Motion, third edition, Springer-Verlag, Berlin, 1999. MR 1725357 (2000h:60050)
  • 25. Z. Palmowski and T. Rolski, A technique for exponential change of measure for Markov processes, Bernoulli 8 (2002), no. 6, 767-785. MR 1963661 (2004f:60152)
  • 26. V. M. Zolotarev, Modern theory of summation of random variables, ``Nauka'', Moscow, 1986; English transl., VSP, Utrecht, 1997. MR 1640024 (99m:60002)
  • 27. R. M. Dudley, Real Analysis and Probability, Cambridge University Press, Cambridge, 2002. MR 1932358 (2003h:60001)
  • 28. N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes, North-Holland Publishing Co. and Kodansha, Ltd., Amsterdam-New York-Tokyo, 1981. MR 637061 (84b:60080)
  • 29. R. L. Dobrushin, Prescribing a system of random variables by conditional distributions, Teor. Verojatnost. i Primenen. 15 (1970), no. 3, 469-497; English transl. in Theory Probab. Appl. 15 (1970), no. 3, 458-486. MR 0298716 (45:7765)
  • 30. I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, ``Naukova Dumka'', Kiev, 1968; English transl., Springer-Verlag, Berlin-Heidelberg-New York, 1972. MR 0346904 (49:11625)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60H10, 60J10

Retrieve articles in all journals with MSC (2010): 60H10, 60J10


Additional Information

A. Yu. Veretennikov
Affiliation: School of Mathematics, University of Leeds, LS2 9JT, Leeds, United Kingdom; Institute of Information Transmission Problems, Bol’shoi Karetny Street 19, 127994, Moscow, Russia
Email: A.Veretennikov@leeds.ac.uk

A. M. Kulik
Affiliation: Institute of Mathematics, National Academy of Science of Ukraine, Tereshchenkivs’ka Street, 3, 01601 Kyiv–4, Ukraine
Email: kulik@imath.kiev.ua

DOI: https://doi.org/10.1090/S0094-9000-2013-00871-0
Keywords: Markov process, extended generator, Poisson equation, Doob–Meyer decomposition
Received by editor(s): September 6, 2011
Published electronically: January 11, 2013
Additional Notes: This research was partially supported by the State Fund for Fundamental Researches, project $Φ$40.1/023
This paper is based on the talk presented at the International Conference “Modern Stochastics: Theory and Applications II” held on September 7–11, 2010, at Kyiv National Taras Shevchenko University and dedicated to the anniversaries of the prominent Ukrainian scientists Anatoliĭ Skorokhod, Vladimir Korolyuk, and Igor Kovalenko
Article copyright: © Copyright 2013 American Mathematical Society

American Mathematical Society