FUNCTIONAL LAW OF THE ITERATED LOGARITHM TYPE FOR A SKEW BROWNIAN MOTION

UDC 519.21

I. H. KRYKUN

Abstract. The functional law of the iterated logarithm is proved for a skew Brownian motion.

1. Introduction

The functional law of the iterated logarithm for the Wiener process was proved in a well-known paper by Strassen [13]. A modification of this result for more general normalizing functions was proposed by Bulinski˘ı [1]. A functional law of the iterated logarithm for solutions of Itô stochastic differential equations with a jump process was obtained by Makhno [11].

The skew Brownian process studied in this paper was introduced by Itô and McKean [9] in terms of elliptic differential operators of the first order according to the Feller classification of one-dimensional diffusion processes. The skew Brownian motion has been studied by many authors since then. Among those authors are, to mention a few, Harrison and Shepp [8] and Le Gall [10], who considered this process as a solution of a stochastic equation with local time. In [10], as well as in [4] and [7], some interrelations were proposed between the solutions of stochastic equations with local time and solutions of Itô’s equations.

The functional law of the iterated logarithm for a skew Brownian motion is studied in this paper. In doing so, we follow the approach of the paper [4].

The paper is organized as follows. Notation and the main results are given in Section 2. An auxiliary Theorem 2 is proved in Section 3. Section 4 is devoted to the proof of some lemmas and Theorem 1.

2. Main results

Consider a skew Brownian motion as a solution of the following stochastic differential equation with local time:

\[\xi(t) = x + \beta L_\xi(t,0) + w(t), \quad t \in [0, 1]. \]
If $|\beta| \leq 1$, then equation (1) has a strong solution [8]. This means that there exists a continuous semimartingale $(\xi(t), \mathcal{F}_t)$ on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ equipped with a flow of σ-algebras \mathcal{F}_t, $t \in [0, 1]$, where a standard one-dimensional Wiener process $(w(t), \mathcal{F}_t)$ leaves, such that the symmetric local time

$$L^2(t, 0) = \lim_{\delta \to 0} \frac{1}{2\delta} \int_0^t I(-\delta, \delta)(\xi(s)) \, ds$$

exists almost surely and equation (1) is satisfied almost surely.

In relation (2) and throughout this paper, $I_A(x)$ denotes the indicator of a set A. Let R be the real line and let $\mathcal{B}(R)$ be the Borel σ-algebra in R. The space of continuous functions f on $[0, 1]$ assuming values in R is denoted by $C[0, 1]$. Let $\mathcal{B}(C[0, 1])$ be the Borel σ-algebra of $C[0, 1]$ and let the norm in $C[0, 1]$ be given by $\|x\| = \sup_{t \in [0, 1]} |x(t)|$.

In what follows we use the standard notation \dot{f} for the density of an absolutely continuous function f, namely

$$f(t) = f(a) + \int_a^t \dot{f}(s) \, ds.$$

Further, let

$$H^2[0, 1] = \left\{ f : f(t) \text{ is absolutely continuous and such that } \int_0^1 |\dot{f}(t)|^2 \, dt < \infty \right\}.$$

Recall the following property of absolutely continuous functions (throughout this paper, the symbol Leb(A) denotes the Lebesgue measure of a set A):

$$\text{Leb}\left\{ t \in [0, 1] : f(t) = 0, \dot{f}(t) \neq 0 \right\} = 0.$$

We put

$$\text{sgn } x = \begin{cases} -1, & \text{for } x < 0, \\ 0, & \text{for } x = 0, \\ 1, & \text{for } x > 0. \end{cases}$$

Let $(X, \mathcal{B}(X))$ be a metric space equipped with a metric ρ, where $\mathcal{B}(X)$ is the Borel σ-algebra in the space X. Let $I(x) : X \to [0, \infty]$ be a lower semicontinuous functional such that $\{x : I(x) \leq a\}$ is a compact set for all $a > 0$.

We say that a family of probability measures $\{\mu_\varepsilon\}$, $\varepsilon > 0$, defined on X satisfies the large deviation principle with a normalizing coefficient $k(\varepsilon)$ such that $\lim_{\varepsilon \to 0} k(\varepsilon) = +\infty$ and with an action functional $I(x)$ if

a) for every open set $G \in \mathcal{B}(X)$,

$$\liminf_{\varepsilon \to 0} \frac{1}{k(\varepsilon)} \ln \mu_\varepsilon(G) \geq - \inf\{I(x), x \in G\};$$

b) for every closed set $F \in \mathcal{B}(X)$,

$$\limsup_{\varepsilon \to 0} \frac{1}{k(\varepsilon)} \ln \mu_\varepsilon(F) \leq - \inf\{I(x), x \in F\}.$$

Next we formulate the contraction principle (see [2] Theorem 5.3.1). Let measures $\{\mu_\varepsilon\}$ on X be generated by some random elements $\{X_\varepsilon\}$. Assume that the family $\{\mu_\varepsilon\}$ satisfies the large deviation principle with an action functional $I(x)$. Further, let $F(x)$ be a continuous mapping acting from X to X'. Then the family of measures $\{\mu_\varepsilon'\}$ on X' generated by the random elements $\{F(X_\varepsilon)\}$ satisfy the large deviation principle with the action functional

$$I'(x) = \inf_{y : F(y) = x} \{I(y)\}.$$
Now we introduce the class Φ of increasing functions $\phi(T)$ such that
\[\lim_{T \to \infty} \phi(T) = \infty, \quad \lim_{T \to \infty} \frac{\phi(T)}{\sqrt{T}} = 0. \]
Throughout the paper we use the notation $\psi(T) = \phi(T)\sqrt{T}$.
Consider the functional
\[J^*(\phi, h, c) = \sum_{k=1}^{\infty} \exp \left\{ -h \phi^2 \left(c^k \right) \right\}, \quad c > 1. \]
Note that if $J^*(\phi, h, c_0) < \infty$ for some number $c_0 > 1$, then $J^*(\phi, h, c) < \infty$ for all $c > 1$.
Given $\phi \in \Phi$, let
\[(4) \quad G^2(\phi) = \inf \{ h > 0 : J^*(\phi, h, c) < \infty \}. \]
We agree that $G^2(\phi) = \infty$ if there is no $h < \infty$ such that $J^*(\phi, h, c) < \infty$. In what follows, the numbers G, G^2, or $G^2(\cdot)$ are always defined according to relation (4).
Put
\[(5) \quad Y(f) = \begin{cases} \frac{1}{2} \int_0^1 |\dot{f}(t)|^2 \, dt, & \text{if } f \in H^2[0, 1], \quad f(0) = 0, \\ +\infty, & \text{otherwise} \end{cases} \]
and
\[\mathcal{F}_D = \left\{ h \in C[0, 1]: h(0) = 0; Y(h) \leq D^2 \right\}. \]
If $D^2 = \infty$, then $\mathcal{F}_\infty = \{ h \in C[0, 1]: h(0) = 0 \}$.
For an arbitrary $T > 0$, consider the following stochastic process:
\[(6) \quad \xi_T(t) = \frac{\xi(Tt) - x}{\sqrt{T} \phi(T)} = \frac{\beta L^\xi(tT, 0) + w(tT)}{\sqrt{T} \phi(T)}. \]
The following is the main result of the paper.

Theorem 1. Let $|\beta| < 1$, $\phi \in \Phi$, and let G be defined by (4). Then the set of cluster points of the family $\{\xi_T(t)\}$ for the almost sure convergence as $T \to \infty$ coincides in $C[0, 1]$ with \mathcal{F}_G.

3. Auxiliary results

The solution of equation (4) is closely related to the solution of the Itô stochastic differential equation. Put
\[(7) \quad \kappa(x) = \begin{cases} (1 - \beta)x, & x \leq 0, \\ (1 + \beta)x, & x \geq 0 \end{cases} \]
and let
\[\varphi(x) = \begin{cases} \frac{x}{1 - \beta}, & x \leq 0, \\ \frac{x}{1 + \beta}, & x \geq 0 \end{cases} \]
be the inverse function to $\kappa(x)$.
Consider the following Itô stochastic differential equation:
\[(8) \quad \eta(t) = \varphi(x) + \int_0^t \frac{dw(s)}{1 + \beta \text{sgn} \eta(s)}, \quad t \in [0, 1]. \]
Note that the diffusion coefficient of this equation is a discontinuous function of bounded variation for which a unique strong solution of equation (8) exists according to a result from [12].
It is known that
\[
\eta(t) = \varphi(\xi(t)) \quad \text{or} \quad \xi(t) = \kappa(\eta(t))
\] (see [4]).

Now we consider the processes
\[
\eta_T(t) = \eta(Tt) - \varphi(x) = \frac{1}{\sqrt{T} \phi(T)} \int_0^{Tt} dw(s) \frac{1 + \beta \text{sgn}(s)}{1 + \beta \text{sgn}(s)}, \quad t \in [0, 1].
\]

Let
\[
L(f(s), \dot{f}(s)) = (1 + \beta \text{sgn}(s))^2 \dot{f}(s)^2
\]
and introduce the functional \(J(f)\) as follows:
\[
J(f) = \begin{cases}
\frac{1}{2} \int_0^1 L(f(t), \dot{f}(t)) dt, & \text{if } f \in H^2[0, 1], \ f(0) = 0, \\
+\infty, & \text{otherwise}.
\end{cases}
\]

Further, let
\[
K_D = \left\{ f \in C[0, 1]: f(0) = 0; J(f) \leq \frac{D^2}{2} \right\}.
\]
If \(D^2 = \infty\), then \(K_{\infty} = \{ f \in C[0, 1]: f(0) = 0 \} \) and
\[
L(f(s), \dot{f}(s)) = \left(\frac{d\kappa(f(s))}{ds} \right)^2.
\]

Remark 1. It follows from relation (11) that \(Y(\kappa(f)) = J(f)\), whence \(\kappa(f) \in \mathcal{F}_D\) in view of \(f \in K_D\).

Lemma 1. Let \(|\beta| < 1\) and let the measures \(\{\nu_T\}\) be generated by the processes \(\{\eta_T(t)\}\). Then the family of measures \(\{\nu_T\}\) satisfies the large deviation principle in the space \((C[0, 1], \mathcal{B}(C[0, 1]))\) with the normalizing coefficient \(\phi^2(T)\) and action functional \(J(\phi)\).

Proof. Using relation (3), the proof follows from [6, Theorem B] with \(\varepsilon = 1/\phi(T)\), since the infimum in Theorem B is attained at either \(\rho = 0\) or \(\rho = 1\) (note that the infimum itself equals 0).

Lemma 1 is proved.

Consider the sequence of functions \(z_k(t) = \eta_{c^k}(t)\), that is,
\[
z_k(t) = \frac{1}{\psi(c^k)} \int_0^{c^k t} dw(s) \frac{1 + \beta \text{sgn}(s)}{1 + \beta \text{sgn}(s)}.
\]
Put
\[
u(t) = \int_0^t dw(s) \frac{1 + \beta \text{sgn}(s)}{1 + \beta \text{sgn}(s)}.
\]
Then
\[
z_k(t) = \frac{u(c^k t)}{\psi(c^k)}.
\]

Theorem 2. Let \(|\beta| < 1, \ \phi \in \Phi\), and let \(G\) be defined by equality (4). Then the set of cluster points of the family \(\{\eta_T(t)\}\) with respect to the almost sure convergence as \(T \to \infty\) coincides with \(K_G\) in \(C[0, 1]\).

Proof. The proof consists of the following three standard steps.
Step 1. First we prove that, for $G^2(\phi) < \infty$, for all $c > 1$, and for an arbitrary $\varepsilon > 0$, there exists a number k_0 such that

$$\rho(z_k, K_G) < \varepsilon$$

almost surely for all $k > k_0$. Note that $\{f : J(f) \leq a\}$ is a compact set in $C[0, 1]$ whatever a number $a < \infty$.

Put $N_\varepsilon = \{f : \rho(f, K_G) \geq \varepsilon\}$. Then there exists $\delta > 0$ such that

$$\inf_{f \in N_\varepsilon} J(f) \geq \frac{G^2(\phi)}{2} + \delta.$$

By Lemma [1], the family $\{\eta_T(t)\}$ satisfies the large deviation principle. Using property b) of the large deviation principle we get

$$\Pr\{z_k \in N_\varepsilon\} \leq \exp \left\{ -\phi^2(c^k) \left(\frac{G^2(\phi)}{2} + \delta \right) \right\}$$

for sufficiently large k. Then the definition of $G^2(\phi)$ and Borel–Cantelli lemma complete the proof of Step 1.

Step 2. We prove that every limit point of the family $\{\eta_T(t)\}$ almost surely belongs to K_G if $G^2(\phi) < \infty$. This result is proved in Step 1 for $\{T\} = \{c^k\}$. Now let $T \in [c^k, c^{k+1}]$. Since the function $\psi(T)$ is non-decreasing with respect to T, we write

$$\frac{1}{\psi(T)} = \frac{\alpha(T, k)}{\psi(c^k)} + \frac{\beta(T, k)}{\psi(c^{k+1})},$$

where $\alpha(T, k) \geq 0$, $\beta(T, k) \geq 0$, and $\alpha(T, k) + \beta(T, k) = 1$. Put

$$\hat{\eta}_{T, k}(t) = \alpha(T, k)z_k(t) + \beta(T, k)z_{k+1}(t).$$

The desired result follows from the following bound: for every $\varepsilon > 0$, there exist two numbers $c_\varepsilon > 1$ and k_0 such that

$$\sup_{t \in [0, 1], T \in [c^k, c^{k+1}]} |\eta_T(t) - \hat{\eta}_{T, k}(t)| < \varepsilon$$

almost surely for all $k > k_0$ and $c \in (1, c_\varepsilon)$.

It follows from the definition of the family $\{\eta_T(t)\}$ and equality (13) that

$$\eta_T(t) = z_k \left(t \frac{T}{c^k} \right) \frac{\psi(c^k)}{\psi(T)} = \alpha(T, k)z_k \left(t \frac{T}{c^k} \right) + \beta(T, k)z_{k+1} \left(t \frac{T}{c^{k+1}} \right).$$

Note that $z_k, z_{k+1} \in \{f : \rho(f, K_G) < \delta\}$ for sufficiently large k and for all δ.

Then

$$|\eta_T(t) - \hat{\eta}_{T, k}(t)| \leq \alpha(T, k) \left| z_k(t) - z_k \left(t \frac{T}{c^k} \right) \right| + \beta(T, k) \left| z_{k+1}(t) - z_{k+1} \left(t \frac{T}{c^{k+1}} \right) \right|$$

and

$$\sup_{t \in [0, 1], T \in [c^k, c^{k+1}]} |\eta_T(t) - \hat{\eta}_{T, k}(t)| \leq \sup_{t \in [0, 1], s \in [t, ct]} |z_k(t) - z_k(s)| + \sup_{t \in [0, 1], s \in [t/c, t]} |z_{k+1}(t) - z_{k+1}(s)|.$$
This implies that
\[
P \left\{ \sup_{t \in [0,1], T \in [c^{k}, c^{k+1}]} |\eta_{T}(t) - \hat{\eta}_{T,k}(t)| \geq \varepsilon \right\}
\]
\[
\leq P \left\{ \sup_{t \in [0,1], s \in [t, c^{k+1}]} |z_{k}(t) - z_{k}(s)| \geq \frac{\varepsilon}{2} \right\}
+ P \left\{ \sup_{t \in [0,1], s \in [t, c^{k+1}]} |z_{k+1}(t) - z_{k+1}(s)| \geq \frac{\varepsilon}{2} \right\}.
\] (15)

To estimate the probabilities on the right hand side of (15) we apply Lemma 2 of [1]: there exists a constant C such that
\[
P \left\{ \sup_{a \leq t, s \leq b, |t-s| \leq h} |w(s) - w(t)| > x \sqrt{h} \right\} \leq C(b-a) \exp \left\{ -\frac{x^2}{4} \right\}
\]
for all $0 \leq a < b < \infty$, $h \leq b-a$, and for an arbitrary $x > 0$.

Thus we get, for another Wiener process $\tilde{w}(t) = w(c^{k}t)/\sqrt{c^{k}}$, that
\[
P \left\{ \sup_{t \in [0,1], s \in [t, c^{k+1}]} |z_{k}(t) - z_{k}(s)| \geq \frac{\varepsilon}{2} \right\}
= P \left\{ \sup_{t \in [0,1], s \in [t, c^{k+1}]} \left| \int_{t}^{s} \frac{d\tilde{w}(u)}{1 + \beta \text{sgn} \eta(c^{k}u)} \right| \geq \frac{\phi (c^{k}) \varepsilon}{2} \right\}.
\]

Next we make a random change of time. Consider the function
\[
\tau(u) = \int_{0}^{u} \frac{ds}{(1 + \beta \text{sgn} \eta(c^{k}s))^{2}}.
\]
Let $\gamma(u)$ be the inverse function to $\tau(u)$. It is clear that $\gamma(u)$ and $\tau(u)$ are increasing functions and that $\gamma(0) = \tau(0) = 0$. Moreover, the derivatives
\[
\tau'(u) = \frac{1}{(1 + \beta \text{sgn} \eta(c^{k}u))^{2}}, \quad \gamma'(u) = \frac{1}{\tau'(\gamma(u))} = \left(1 + \beta \text{sgn} \eta(c^{k} \gamma(u))\right)^{2}
\]
exist almost surely. Letting $P_{1} = (1 - |\beta|)^{2}$ and $P_{2} = (1 + |\beta|)^{2}$, we prove that
\[
P_{1} u \leq \gamma(u) \leq P_{2} u, \quad \frac{u}{P_{2}} \leq \tau(u) \leq \frac{u}{P_{1}}.
\]

According to the change of time made above, we get, for yet another Wiener process $\hat{w}(t)$, that
\[
\int_{t}^{s} \frac{d\hat{w}(u)}{1 + \beta \text{sgn} \eta(c^{k}u)} = \hat{w}(\gamma(s)) - \hat{w}(\gamma(t)).
\]

Further,
\[
P \left\{ \sup_{t \in [0,1], s \in [t, c^{k+1}]} \left| \int_{t}^{s} \frac{d\tilde{w}(u)}{1 + \beta \text{sgn} \eta(c^{k}u)} \right| \geq \frac{\phi (c^{k}) \varepsilon}{2} \right\}
= P \left\{ \sup_{t \in [0,1], s \in [t, c^{k+1}]} |\hat{w}(\gamma(s)) - \hat{w}(\gamma(t))| \geq \frac{\phi (c^{k}) \varepsilon}{2} \right\}
= P \left\{ \sup_{\gamma(t) \in [\gamma(0), \gamma(1)], \gamma(s) \in [\gamma(t), \gamma(c^{k+1})]} |\hat{w}(\gamma(s)) - \hat{w}(\gamma(t))| \geq \frac{\phi (c^{k}) \varepsilon}{2} \right\}
\leq P \left\{ \sup_{u, v \in [0, P_{2}], |v-u| \leq P_{2} \frac{\varepsilon}{2}} |\hat{w}(v) - \hat{w}(u)| \geq \frac{\phi (c^{k}) \varepsilon}{2} \right\}.
\]
In view of the result of [1] mentioned above,

\[
P \left\{ \sup_{t \in [0,1], s \in [t, ct \wedge 1]} |z_k(t) - z_k(s)| \geq \frac{\varepsilon}{2} \right\}
\leq P \left\{ \sup_{u,v \in [0,P_2]} |\hat{w}(v) - \hat{w}(u)| \geq \frac{\phi (c^k) \varepsilon \sqrt{P_2(c-1)}}{2 \sqrt{P_2(c-1) \sqrt{c}}} \right\}
\leq \frac{2CP_2 \sqrt{c}}{\phi (c^k) \varepsilon \sqrt{P_2(c-1)}} \exp \left\{ - \frac{\phi^2 (c^k) \varepsilon^2 c}{16P_2(c-1)} \right\}.
\]

Here we used the property

\[
|v - u| \leq \gamma (ct \wedge 1) - \gamma (t) = \int_t^{ct \wedge 1} \gamma' (x) \, dx \leq (1 + |\beta|)^2 \int_t^{ct \wedge 1} \, dx \leq P_2 \frac{c - 1}{c},
\]

since \(ct \wedge 1 - t \leq (c - 1)/c \) under the assumptions of the theorem.

Choosing

\[
c_\varepsilon = 1 + \frac{\varepsilon^2}{8(1 + |\beta|)^2G^2(\phi)}
\]

we get

\[
\exp \left\{ - \frac{\phi^2 (c^k) \varepsilon^2 c}{16P_2(c-1)} \right\} \leq \exp \left\{ - \frac{\phi^2 (c^k)}{2}G^2(\phi) \right\}
\]

for \(c \in (1, c_\varepsilon) \). Next, for every positive constant \(C_1 \), there exists a positive integer \(k_0 \) such that

\[
\frac{2CP_2 \sqrt{c}}{\phi (c^k) \varepsilon \sqrt{P_2(c-1)}} \leq C_1
\]

for all \(k \geq k_0 \). Thus

\[
P \left\{ \sup_{t \in [0,1], s \in [t, ct \wedge 1]} |z_k(t) - z_k(s)| \geq \frac{\varepsilon}{2} \right\} \leq C_1 \exp \left\{ - \frac{\phi^2 (c^k)}{2}G^2(\phi) \right\}.
\]

In a similar way we prove that, for any positive constant \(C_2 \), there exists a positive integer \(k_0 \) such that

\[
P \left\{ \sup_{t \in [0,1], s \in [t/c, t]} |z_{k+1}(t) - z_{k+1}(s)| \geq \frac{\varepsilon}{2} \right\} \leq C_2 \exp \left\{ - \frac{\phi^2 (c^k)}{2}G^2(\phi) \right\}
\]

for all \(k \geq k_0 \). Hence (16), (15), and Borel–Cantelli imply (14).

Step 3. To complete the proof of Theorem 2 it is sufficient to prove that if \(G^2(\phi) \leq \infty \), then every function \(f \in K_G \) such that \(2J(f) = h^2 < G^2(\phi) \) is a limit point of the sequence \(\{z_k(t)\} \). Therefore it is sufficient to prove that, for every function \(f : 2J(f) = h^2 \), there exists a number \(c > 1 \) such that the random events

\[
B_k = \left\{ \omega : \sup_{t \in [0,1]} |z_k(t) - f(t)| < \delta \right\}
\]

occur infinitely often for every \(\delta > 0 \). This means that

\[
P \left\{ \limsup_{k \to \infty} B_k \right\} = 1.
\]
We use the Borel–Cantelli–Lévy lemma [5] to prove relation (18). Introduce the family of \(\sigma \)-algebras \(\mathcal{F}_j = \sigma\{\eta(s), s \leq c^j\} \). Put
\[
A_k = \left\{ \omega : \sup_{t \in [0, 1/c]} |z_k(t) - f(t)| < \delta \right\}
\]
and
\[
D_k = \left\{ \omega : \sup_{t \in [1/c, 1]} |z_k(t) - f(t)| < \delta \right\}.
\]

Note that \(B_k = A_k \cap D_k \) and \(D_k \prec \mathcal{F}_{k-1} \). Since
\[
z_k(t) = z_{k-1}(tc) \frac{\psi(k-1)}{\psi(k)},
\]
z\(_k(t) \prec \mathcal{F}_{k-1}\) for \(t \in [0, 1/c] \). Then \(A_k \prec \mathcal{F}_{k-1} \) and
\[
P(B_k | \mathcal{F}_{k-1}) = I(A_k) \cdot P(D_k | \mathcal{F}_{k-1}).
\]
It follows from the Borel–Cantelli–Lévy lemma that relation (18) holds if
\[
\sum_k I(A_k) \cdot P(D_k | \mathcal{F}_{k-1}) = \infty.
\]

We construct a partition of the interval \([1/c, 1]\) consisting of smaller intervals of length \(\Delta \) as follows: let \(\Delta \) be a sufficiently small positive number such that \(n(\Delta) = \frac{c-1}{c\Delta} \) is a positive integer number. Then the members of the partition of the interval \([1/c, 1]\) are
\[
\Delta_i = [d_i, d_{i+1}], \quad d_i = \frac{1}{c} + i\Delta, \quad i = 0, \ldots, n(\Delta) - 1.
\]
In what follows we construct all the partitions of the interval \([1/c, 1]\) in the way described above.

Now we consider the set
\[
\overline{D}_k = \left\{ \sup_{t \in [1/c, 1]} |z_k(t) - f(t)| \geq \delta \right\}
\]

\[
\subseteq \left\{ \sup_{i \in \Delta_i} \sup_{t \in \Delta_i} |z_k(t) - z_k(d_i)| \geq \frac{\delta}{3} \right\} \cup \left\{ \sup_{i} |z_k(d_i) - f(d_i)| \geq \frac{\delta}{3} \right\}
\]

\[
\cup \left\{ \sup_{i \in \Delta_i} \sup_{t \in \Delta_i} |f(d_i) - f(t)| \geq \frac{\delta}{3} \right\}.
\]

By the Cauchy–Bunyakovskii inequality,
\[
|f(t) - f(d_i)|^2 = \left| \int_{d_i}^{t} f(s) \, ds \right|^2 \leq (t - d_i) \int_{d_i}^{t} |f(s)|^2 \, ds \leq \Delta h^2.
\]
If \(\Delta < \Delta_* = \delta^2/(9h^2) \), then
\[
\left\{ \sup_{i \in \Delta_i} \sup_{t \in \Delta_i} |f(d_i) - f(t)| \geq \frac{\delta}{3} \right\}
\]
is an empty set. For such a number \(\Delta \),
\[
P(D_k | \mathcal{F}_{k-1}) \geq P\left\{ \sup_{i} |u(c^k d_i) - f(d_i)\psi(c^k)\psi(c^k)| \mathcal{F}_{k-1} \right\}
\]
\[
- P\left\{ \sup_{i \in \Delta_i} \sup_{t \in \Delta_i} |z_k(t) - z_k(d_i)| \geq \frac{\delta}{3} \mathcal{F}_{k-1} \right\}.
\]
Now we make use of several auxiliary results stated below. Lemma 2 (see Section 4) implies that there exists a constant $c > 1$ such that

$$I_{A_k}(\omega) = 1$$

almost surely for all sufficiently large k.

Now Lemma 3 (see Section 4) implies that, for a fixed $c > 1$ and all $\delta > 0$ and $Q > 0$, there exists a partition of the interval $[1/c, 1]$ consisting of smaller intervals of length Δ_{**} such that

$$P\left\{ \sup_i \sup_{t \in \Delta_i} |z_k(t) - z_k(d_i)| \geq \frac{\delta}{3} |I_{k-1}^{**} | \right\} \leq 2n(\Delta_{**}) \exp \left\{ -\phi^2 \left(\frac{c^k}{2} \right) Q \right\}$$

almost surely. Lemma 8 (see Section 4) implies that

$$P\left\{ \sup_i \sup_{t \in \Delta_i} |z_k(t) - z_k(d_i)| \geq \frac{\delta}{3} \right\} \leq 2n(\Delta) \exp \left\{ -\phi^2 \left(\frac{c^k}{2} \right) \right\}$$

almost surely for the constant c defined in Lemma 2 and for an arbitrary $q > 0$ if k is sufficiently large.

Now we turn back to the proof of the theorem. We pick up a number $c > 1$ such that equality (22) holds. Then we choose $Q = \frac{G^2(\phi)}{2} - q + 1$ in inequality (23), where the constant q is the same as in (24), and a partition of the interval $[1/c, 1]$ with $\Delta < \min(\Delta_*, \Delta_{**})$. If the number k is sufficiently large, namely, if

$$8n(\Delta) \leq \exp \left\{ \phi^2 \left(\frac{c^k}{2} \right) \right\} ,$$

then

$$P\left\{ \sup_i \sup_{t \in \Delta_i} |z_k(t) - z_k(d_i)| \geq \frac{\delta}{3} |I_{k-1}^{**} | \right\} \leq 2n(\Delta) \exp \left\{ -\phi^2 \left(\frac{c^k}{2} \right) \right\} \leq \frac{1}{4} \exp \left\{ -\phi^2 \left(\frac{c^k}{2} \right) \right\} \leq \frac{1}{4} \exp \left\{ -\phi^2 \left(\frac{c^k}{2} \right) \right\}$$

almost surely, whence

$$P(D_k | I_{k-1}) \geq \frac{1}{4} \exp \left\{ -\phi^2 \left(\frac{c^k}{2} \right) \right\}$$

almost surely by (24) and (21) for sufficiently large k and some $q > 0$.

Taking into account equalities (22) and (19) together with the definition of $G^2(\phi)$ we obtain (20). The proof of Step 3 is complete and thus Theorem 2 is proved. \hfill \Box

4. PROOF OF THEOREM 1 AND FURTHER AUXILIARY RESULTS

We start with the auxiliary results.

Lemma 2. For all $\delta > 0$ and all $h < \infty$, there exist a constant $c > 1$ and a positive integer number k_0 such that

$$\sup_{t \in [0, 1/c]} |z_k(t) - g(t)| < \delta$$

almost surely for all $k > k_0$ and $g \in K_h$.
Proof. According to Step 1 in the proof of Theorem 2, for all \(c > 1 \) and an arbitrary \(\delta > 0 \) there exists a number \(k_0 \) such that

\[
\inf_{g \in K_h} \sup_{t \in [0, 1/c]} |z_k(t) - g(t)| < \frac{\delta}{3}
\]

almost surely for all \(k > k_0 \).

On the other hand, for every \(g \in K_h \),

\[
|g(t)|^2 = \left| \int_0^t \dot{g}(s) \, ds \right|^2 \leq 2th^2.
\]

Let \(c > \max(1, 18h^2/\delta^2) \); then

\[
\sup_{t \in [0, 1/c]} |g(t)| < \frac{\delta}{3}.
\]

We deduce from (26) and (27) that

\[
\sup_{t \in [0, 1/c]} |z_k(t)| < \frac{2\delta}{3}
\]

almost surely. The latter inequality together with (27) proves (25), which completes the proof of Lemma 2. \(\square \)

The following result uses the partition of the interval \([1/c, 1]\) consisting of smaller intervals of length \(\Delta \) described above.

Lemma 3. Let \(c > 1 \) be fixed. Then, for all \(\delta > 0 \) and an arbitrary \(Q > 0 \), there exists a partition of the interval \([1/c, 1]\) consisting of smaller intervals of length \(\Delta \) such that

\[
P \left\{ \sup_{i} \sup_{t \in \Delta_i} |z_k(t) - z_k(d_i)| \geq \delta \left| \mathbb{I}_{k-1} \right| \right\} \leq 2n(\Delta) \exp \left\{ -\phi^2 \left(c^k \right) Q \right\}
\]

almost surely.

Proof. Consider the \(\sigma \)-algebras \(G_{c^k d_i} = \sigma\{\eta(s), s \leq c^k d_i\} \). Then

\[
P \left\{ \sup_{t \in \Delta_i} |z_k(t) - z_k(d_i)| \geq \delta \left| G_{c^k d_i} \right| \right\} \leq 2 \exp \left\{ -\phi^2 \left(c^k \right) Q \right\}
\]

almost surely. The latter bound is proved similarly to the proof of Theorem 5 in [3, p. 172].

Since \(\mathbb{I}_{k-1} \subset \mathbb{G}_{c^k d_i} \) for \(i = 0, 1, \ldots, n(\Delta) - 1 \),

\[
P \left\{ \sup_{t \in \Delta_i} |z_k(t) - z_k(d_i)| \geq \delta \left| \mathbb{I}_{k-1} \right| \right\} \leq 2 \exp \left\{ -\phi^2 \left(c^k \right) Q \right\}
\]

almost surely.

This implies inequality (28) and completes the proof of Lemma 3. \(\square \)

Lemma 4. Let \(h(x) \) be a positive increasing function for \(x \geq 0 \). Then

\[
E \zeta I_{\{\xi > a\}} \leq \frac{1}{h(a)} E \zeta h(|\xi|)
\]

for \(\zeta \geq 0 \) and \(a > 0 \).
Lemma 5. Let

\[\mathbb{E} \zeta I_{(\xi| > a)} = \int_{(\omega: h(\xi| > h(a))} \zeta \mathbb{P}(d\omega) \]

almost surely. Lemma 5 is proved.

\[\square \]

Proof. Since

\[M_k(f; x) = \frac{1}{\phi^2(c^k)} \ln \left\{ \mathbb{E} \left\{ \exp \left[\frac{\phi(c^k)}{\sqrt{c^k}} \int_{c^k-1}^{c^k} f \left(\frac{s}{c^k} \right) 1 + \beta \text{sgn} \eta(s) \right] \eta(c^{k-1}) = x \right\} \right\} \]

Lemma 4 is proved.

\[\square \]

Put

\[M_k(f; x) = \frac{1}{\phi^2(c^k)} \ln \left\{ \mathbb{E} \left\{ \exp \left[\frac{\phi(c^k)}{\sqrt{c^k}} \int_{c^k-1}^{c^k} f \left(\frac{s}{c^k} \right) 1 + \beta \text{sgn} \eta(s) \right] \eta(c^{k-1}) = x \right\} \right\} . \]

Lemma 5. Let \(|\beta| < 1\) and let \(c > 1\) be fixed. Then

\[M_k(f; x) \leq \frac{1}{2(1 - |\beta|)^2} \int_{1/c}^{1} f^2(s) \, ds \]

almost surely for \(f \in C[0, 1]\).

Proof. Since

\[\frac{\phi(c^k)}{\sqrt{c^k}} \int_{c^k-1}^{c^k} f \left(\frac{s}{c^k} \right) 1 + \beta \text{sgn} \eta(s) \, ds = \frac{\phi^2(c^k)}{2c^k} \int_{c^k-1}^{c^k} f^2 \left(\frac{s}{c^k} \right) \, ds \]

and

\[\frac{1}{(1 + \beta \text{sgn} \eta(s))^2} \leq \frac{1}{(1 - |\beta|)^2}, \]

the Girsanov theorem implies

\[M_k(f; x) \leq \frac{1}{\phi^2(c^k)} \ln \left\{ \mathbb{E} \left\{ \exp \left[\frac{\phi^2(c^k)}{2(1 - |\beta|)^2c^k} \int_{c^k-1}^{c^k} f^2 \left(\frac{s}{c^k} \right) \, ds \right] \right\} \right\} \]

almost surely. Lemma 5 is proved.

\[\square \]

Put

\[C_k = \left\{ \sup_i |u(c^kd_i) - f(d_i)\psi(c^k)| < \frac{\delta}{3} \psi(c^k) \right\}; \]

\[C_k(i) = \left\{ |u(c^kd_i) - f(d_i)\psi(c^k)| < \frac{\delta}{3} \psi(c^k) \right\}, \quad i = 0, 1, \ldots, n(\Delta) - 1; \]

\[J_c(f) = \frac{1}{2} \int_{1/c}^{1} (1 + \beta \text{sgn} f(s))^2 f^2(s) \, ds. \]

For \(|\beta| < 1\), we choose the constants \(l, m,\) and \(p\) such that

\[A_1. \quad 0 < m < \frac{(1 - |\beta|)^2}{(1 + |\beta|)^2}. \]

\[A_2. \quad \text{If } \beta \neq 0, \text{ then } \sqrt{m \frac{1 - |\beta|}{1 + |\beta|}} < l < \sqrt{m - \frac{m^2}{4|\beta|}} (1 - |\beta|); \text{ otherwise } l = m. \]

\[A_3. \quad p = \frac{(1 - |\beta|)^2}{l} \left(\frac{c^2 - m^2 + m}{(1 + |\beta|)^2} + 1 \right). \]
Put
\[K_1 = \frac{l^2 - m^2 + m}{(1 + |\beta|)^2} - \frac{l^2}{(1 - |\beta|)^2}. \]

Remark 2. It is not hard to check that the following properties hold:

1. Condition \(A_1 \) implies that \(0 < m < 1 \), that is, the expression under the square root in condition \(A_2 \) is positive.
2. Condition \(A_2 \) implies that \(K_1 > 0 \).
3. The set of numbers \(l \) satisfying the inequality in condition \(A_2 \) is nonempty, since this inequality is equivalent to
\[
\frac{1}{1 + |\beta|} < \sqrt{\frac{1 - m}{4|\beta|}};
\]
the latter inequality holds by condition \(A_1 \).

For the constants \(l, m, \) and \(p \) put
\[\rho_k(l, m) = \exp \left\{ \frac{l}{\sqrt{c^k}} \int_{c^{k-1}}^{c^k} \frac{1 + \beta \sgn f \left(\frac{s}{c^k} \right)}{1 + \beta \sgn \eta(s)} \int_{c^{k-1}}^{c^k} \frac{1 + \beta \sgn f \left(\frac{s}{c^k} \right)}{(1 + \beta \sgn \eta(s))^2} f^2 \left(\frac{s}{c^k} \right) \frac{(1 + \beta \sgn f \left(\frac{s}{c^k} \right))}{2c^k} \right\} \]
and
\[L_{k,p}(\delta) = \left\{ \int_{c^{k-1}}^{c^k} \frac{1 + \beta \sgn f \left(\frac{s}{c^k} \right)}{1 + \beta \sgn \eta(s)} \int_{c^{k-1}}^{c^k} f^2 \left(\frac{s}{c^k} \right) dw(s) \right\} \]
\[- \frac{p}{2\sqrt{c^k(1 - |\beta|)^2}} \left\{ \int_{c^{k-1}}^{c^k} \left(1 + \beta \sgn f \left(\frac{s}{c^k} \right) \right)^2 \frac{(1 + \beta \sgn f \left(\frac{s}{c^k} \right))}{2c^k} \int_{c^{k-1}}^{c^k} \frac{1 + \beta \sgn f \left(\frac{s}{c^k} \right)}{(1 + \beta \sgn \eta(s))^2} f^2 \left(\frac{s}{c^k} \right) \right\} \]
\[\leq \frac{\delta \psi(c^k)}{(1 - |\beta|)^2} J_c(f) \]

Lemma 6. Let \(|\beta| < 1 \). Then, for the constants \(l \) and \(m \) chosen above, there exists a constant \(c > 1 \) such that
\[
P \{ \rho_k(l, m)I_{\Omega \setminus C_k(i)}(\omega) | \exists_{k-1} \} \leq \exp \left\{ \phi^2(c^k) \frac{l^2 - m^2}{(1 + |\beta|)^2} J_c(f) \right\} a_k(i)
\]
almost surely, where the numbers \(a_k(i) \) do not depend on \(\theta \) and \(\Delta \) and are such that
\[
\lim_{k \to \infty} a_k(i) = 0, \quad i = 0, 1, \ldots, n(\Delta) - 1.
\]

Proof. Let \(\theta \prec \exists_{k-1} \) be an arbitrary positive bounded random variable. We apply Lemma \[4\] to the function
\[
h(x) = \exp \left\{ \frac{\phi(c^k) N x}{\sqrt{c^k}} \right\}
\]
with some constant \(N \) to be specified later. Then

\[
E \theta_{\rho_k}(l, m) I_{\Omega \setminus C_k(i)}(\omega)
\]

\[
\leq E \theta_{\rho_k}(l, m) \exp \left\{ \frac{N \phi(c^k)}{\sqrt{c^k}} |u(c^kd_i) - f(d_i)\psi(c^k)| - \frac{\delta}{3} N \phi^2(c^k) \right\}
\]

\[
\leq E \theta_{\rho_k}(l, m) \exp \left\{ \frac{N \phi(c^k)}{\sqrt{c^k}} (u(c^kd_i) - f(d_i)\psi(c^k)) - \frac{\delta}{3} N \phi^2(c^k) \right\}
\]

\[
+ E \theta_{\rho_k}(l, m) \exp \left\{ -\frac{N \phi(c^k)}{\sqrt{c^k}} (u(c^kd_i) - f(d_i)\psi(c^k)) - \frac{\delta}{3} N \phi^2(c^k) \right\}
\]

\[
= J^1_k(i) + J^2_k(i).
\]

First we consider the term \(J^1_k(i) \). Using equality \(30 \) together with

\[
\frac{1}{(1 + \beta \text{sgn} \eta(s c^k))^2} \geq \frac{1}{(1 + |\beta|)^2},
\]

we get

\[
J^1_k(i) = \exp \left\{ -\phi^2(c^k) \left[N f(d_i) + N \frac{\delta}{3} + \frac{m}{2} \int_{1/c}^1 (1 + \beta \text{sgn} f(s))^2 \int_{1/c}^1 \frac{1}{1 + \beta \text{sgn} \eta(s c^k)} ds ds \right] \right\}
\]

\[
\times E \theta \exp \left\{ \frac{\phi(c^k)}{\sqrt{c^k}} \left(Nu(c^kd_i) + \int_{c^k-1}^{c^k} \left[1 + \beta \text{sgn} f \left(\frac{s}{c^k} \right) \right] \frac{1}{1 + \beta \text{sgn} \eta(s)} \right) \right\}
\]

\[
\leq \exp \left\{ -\phi^2(c^k) \left[N f(d_i) + N \frac{\delta}{3} + \frac{m}{(1 + |\beta|)^2} J_c(f) \right] \right\}
\]

\[
\times E \left\{ \theta E \left\{ \exp \left[\frac{\phi(c^k)}{\sqrt{c^k}} \left(Nu(c^{k-1}) + \int_{c^k-1}^{c^k} \left[\frac{1}{1 + \beta \text{sgn} f \left(\frac{s}{c^k} \right) \left(\frac{\rho}{c^k} \right) \left(\frac{s}{c^k} \right) \left(\frac{\rho}{c^k} \right)}{1 + \beta \text{sgn} \eta(s)} \right) \right) \right] \right\} \right\}.
\]

The Markov property of the process \(\eta(t) \) implies that

\[
E \left\{ \exp \left[\frac{\phi(c^k)}{\sqrt{c^k}} \int_{c^k-1}^{c^k} \left[\frac{1}{1 + \beta \text{sgn} f \left(\frac{s}{c^k} \right) \left(\frac{\rho}{c^k} \right) \left(\frac{s}{c^k} \right) \left(\frac{\rho}{c^k} \right)}{1 + \beta \text{sgn} \eta(s)} \right) \right] \right\} \right\}
\]

\[
= \exp \left\{ \phi^2(c^k) M_k \left(l(1 + \beta \text{sgn} f) \dot{f} + NI_{[c^{k-1}, c^{k-1}]}(s) \eta(c^{k-1}) \right) \right\}.
\]
Applying Lemma 5 we obtain
\[J_k^i(i) \leq \exp \left\{ -\phi^2(c^k) \left[N \frac{\delta}{3} + \frac{m}{(1 + |\beta|)^2} J_c(f) \right] \right\} \times \mathbb{E} \theta \exp \left\{ \frac{\phi(c^k)}{\sqrt{c^k}} N \left(u(c^{k-1}) - f(d_i) \psi(c^k) \right) \right\} \times \exp \left\{ \phi^2(c^k) M_k \left(J(1 + |\beta| f) \dot{f} + NI_{[c^k, c^k]}(\cdot; \eta(c^{k-1})) \right) \right\} \leq \exp \left\{ -\phi^2(c^k) \left[N \frac{\delta}{3} + \frac{m}{(1 + |\beta|)^2} J_c(f) \right] \right\} \times \mathbb{E} \theta \exp \left\{ \frac{\phi(c^k)}{\sqrt{c^k}} N \left(u(c^{k-1}) - f(1/c) \psi(c^k) \right) \right\} \times \exp \left\{ \frac{\phi^2(c^k)}{2(1 - |\beta|)^2} \int_{1/c}^{d_i} \left(J(1 + \beta \text{sgn} f(s)) \dot{f}(s) + NI_{[1/c, d_i]}(s) \right)^2 ds \right\}.

By Lemma 2 there exists a constant \(c > 1 \) such that
\[\text{(31)} \quad \exp \left\{ \frac{\phi(c^k)}{\sqrt{c^k}} N \left(u(c^{k-1}) - f(1/c) \psi(c^k) \right) \right\} \leq \exp \left\{ \frac{\delta}{6} N \phi^2(c^k) \right\} \]
almost surely for sufficiently large \(k \). Then we estimate
\[\int_{1/c}^{1} \left(J(1 + \beta \text{sgn} f(s)) \dot{f}(s) + NI_{[1/c, d_i]}(s) \right)^2 ds \]
\[\leq 2l^2 J_c(f) + 2NI \int_{1/c}^{d_i} (1 + \beta \text{sgn} f(s)) \dot{f}(s) ds + N^2(1 - 1/c). \text{(32)} \]

Denote the right hand side of inequality (32) by \(A_c(J_c, N, l) \). Then (31) and (32) imply
\[J_k^i(i) \leq \exp \left\{ -\phi^2(c^k) \left[N \frac{\delta}{6} + \frac{m}{(1 + |\beta|)^2} J_c(f) \right] \right\} \exp \left\{ \frac{\phi^2(c^k)}{2(1 - |\beta|)^2} A_c(J_c, N, l) \right\} \times \exp \left\{ \phi^2(c^k) N (f(1/c) - f(d_i)) \right\} \mathbb{E} \theta \]
\[= \exp \left\{ -\phi^2(c^k) \left[N \frac{\delta}{6} + \frac{m}{(1 + |\beta|)^2} J_c(f) - \frac{l^2}{(1 - |\beta|)^2} J_c(f) \right] \right\} \times \exp \left\{ \phi^2(c^k) N \int_{1/c}^{d_i} \left(\frac{(1 + \beta \text{sgn} f(s))}{(1 - |\beta|)^2} - 1 \right) \dot{f}(s) ds \right\} \mathbb{E} \theta. \text{(33)} \]

The expression written in the parentheses in the integral in (33) does not exceed
\[\frac{l(1 + |\beta|)}{(1 - |\beta|)^2}, \]
while
\[\int_{1/c}^{d_i} \dot{f}(s) ds \leq \left| \int_{1/c}^{d_i} \frac{1 + \beta \text{sgn} f}{1 + \beta \text{sgn} f} \dot{f}(s) ds \right| \leq \sqrt{2} J_c(f) \sqrt{1 - 1/c}. \]
Thus we deduce from inequality (33) that
\[
J^1_k(i) \leq \exp\left\{ -\phi^2\left(c^k\right) \left[\frac{N\delta}{6} + J_c(f) \left(\frac{m}{(1+|\beta|)^2} - \frac{l^2}{(1-|\beta|)^2} \right) - \frac{N^2(1-1/c)}{2(1-|\beta|)^2} \right. \right.
\]
\[
\left. \left. - \frac{1N(1+|\beta|)}{(1-|\beta|)^3} \sqrt{2J_c(f)(1-1/c)} \right] \right\} \theta
\]
\[
= \exp\left\{ \phi^2\left(c^k\right) \frac{l^2 - m^2}{(1+|\beta|)^2} J_c(f) \right\}
\]
\[
\times \exp\left\{ -\phi^2\left(c^k\right) \left[\frac{N\delta}{6} - \frac{N^2(1-1/c)}{2(1-|\beta|)^2}
\right.
ight.
\]
\[
\left. \left. + J_c(f) \left(\frac{l^2 - m^2}{(1+|\beta|)^2} + \frac{m}{(1+|\beta|)^2} - \frac{l^2}{(1-|\beta|)^2} \right) \right.
ight.
\]
\[
\left. \left. - \frac{1N(1+|\beta|)}{(1-|\beta|)^3} \sqrt{2J_c(f)(1-1/c)} \right] \right\} \theta.
\]
Taking into account equality (24) we put
\[
\hat{a}_k(i) = \exp\left\{ -\phi^2\left(c^k\right) \left[\frac{N\delta}{6} - \frac{N^2(1-1/c)}{2(1-|\beta|)^2} + K_1 J_c(f) - \frac{1N(1+|\beta|)}{(1-|\beta|)^3} \sqrt{2J_c(f)(1-1/c)} \right] \right\}.
\]
Since $K_1 > 0$, the expression in the square brackets is positive for some $N > 0$. For such a number N,
\[
\lim_{k \to \infty} \hat{a}_k(i) = 0
\]
and
\[
J^1_k(i) \leq \exp\left\{ \phi^2\left(c^k\right) \frac{l^2 - m^2}{(1+|\beta|)^2} J_c(f) \right\} \hat{a}_k(i) \theta.
\]
Similarly
\[
J^2_k(i) \leq \exp\left\{ \phi^2\left(c^k\right) \frac{l^2 - m^2}{(1+|\beta|)^2} J_c(f) \right\} \hat{a}_k(i) \theta,
\]
where
\[
\lim_{k \to \infty} \hat{a}_k(i) = 0.
\]
Now Lemma 6 follows from bounds (34) and (35) with $a_k(i) = \hat{a}_k(i) + \tilde{a}_k(i)$. \qed

Lemma 7. Let $|\beta| < 1$. Then
\[
P \{ p_k(l, m)I_{\Omega \setminus \Lambda_{k, \rho}(\delta)}(\omega)|\mathcal{F}_{k-1} \} \leq \exp\left\{ \phi^2\left(c^k\right) \frac{l^2 - m^2}{(1+|\beta|)^2} J_c(f) \right\} b_k(\delta)
\]
almost surely for the constants l, m, and p chosen above and for all $\delta > 0$, where $b_k(\delta)$ does not depend on θ and is such that $\lim_{k \to \infty} b_k(\delta) = 0$.

Proof. Let $\theta \prec \mathcal{F}_{k-1}$ be an arbitrary positive bounded random variable. We use Lemma 4 with the function
\[
h(x) = \exp\left\{ \frac{\phi\left(c^k\right) N}{\sqrt{c^k}} x \right\}
\]
and with some constant $0 < N < 1$ to be specified later. Then

$$
\mathbb{E} \theta \rho_k(l, m) \mathbb{I}_{\Omega \setminus L_k, p}(\delta)(\omega)
\leq \mathbb{E} \theta \rho_k(l, m)
\times \exp \left\{ \phi \left(\frac{c^k}{\sqrt{c^k}} \right) N \int_{c_{k-1}}^{c_k} \frac{1 + \beta \text{sgn} f \left(\frac{s}{c^k} \right)}{1 + \beta \text{sgn} \eta(s)} \dot{f} \left(\frac{s}{c^k} \right) \, dw(s)
- \frac{\rho \phi^2 \left(\frac{c^k}{\sqrt{c^k}} \right)}{2(1 - |\beta|)^2 c^k} N \int_{c_{k-1}}^{c_k} \left(1 + \beta \text{sgn} f \left(\frac{s}{c^k} \right) \right) \dot{f}^2 \left(\frac{s}{c^k} \right) \, ds \right\}
\times \exp \left\{ -\phi^2 \left(\frac{c^k}{\sqrt{c^k}} \right) N \frac{\delta}{(1 - |\beta|)^2} J_c(f) \right\}
\leq \mathbb{E} \theta \rho_k(l, m) \exp \left\{ \phi \left(\frac{c^k}{\sqrt{c^k}} \right) N \int_{c_{k-1}}^{c_k} \frac{1 + \beta \text{sgn} f \left(\frac{s}{c^k} \right)}{1 + \beta \text{sgn} \eta(s)} \dot{f} \left(\frac{s}{c^k} \right) \, dw(s)
- \frac{(\delta + p)\phi^2 \left(\frac{c^k}{\sqrt{c^k}} \right) N}{(1 - |\beta|)^2} J_c(f) \right\}
+ \mathbb{E} \theta \rho_k(l, m) \exp \left\{ -\phi \left(\frac{c^k}{\sqrt{c^k}} \right) N \int_{c_{k-1}}^{c_k} \frac{1 + \beta \text{sgn} f \left(\frac{s}{c^k} \right)}{1 + \beta \text{sgn} \eta(s)} \dot{f} \left(\frac{s}{c^k} \right) \, dw(s)
- \frac{(\delta - p)\phi^2 \left(\frac{c^k}{\sqrt{c^k}} \right) N}{(1 - |\beta|)^2} J_c(f) \right\}
= J_k^1(\delta) + J_k^2(\delta).
$$

Substituting $\rho_k(l, m)$, we consider the term $J_k^1(\delta)$. We see from the Markov property of the process $\eta(t)$ that

$$
J_k^1(\delta) = \mathbb{E} \theta \exp \left\{ \phi \left(\frac{c^k}{\sqrt{c^k}} \right) (N + l) \int_{c_{k-1}}^{c_k} \frac{1 + \beta \text{sgn} f \left(\frac{s}{c^k} \right)}{1 + \beta \text{sgn} \eta(s)} \dot{f} \left(\frac{s}{c^k} \right) \, dw(s)
- \phi^2 \left(\frac{c^k}{\sqrt{c^k}} \right) \left(\frac{(\delta + p)N}{(1 - |\beta|)^2} J_c(f) + \frac{m}{2} \int_{1/c}^{1} \left(1 + \beta \text{sgn} f(s) \right)^2 \dot{f}^2(s) \, ds \right) \right\}
\leq \exp \left\{ -\phi^2 \left(\frac{c^k}{\sqrt{c^k}} \right) J_c(f) \left(\frac{(\delta + p)N}{(1 - |\beta|)^2} + \frac{m}{(1 + |\beta|)^2} \right) \right\}
\times \mathbb{E} \theta \mathbb{E} \left\{ \exp \left\{ \phi \left(\frac{c^k}{\sqrt{c^k}} \right) (N + l) \int_{c_{k-1}}^{c_k} \frac{1 + \beta \text{sgn} f \left(\frac{s}{c^k} \right)}{1 + \beta \text{sgn} \eta(s)} \dot{f} \left(\frac{s}{c^k} \right) \, dw(s) \right\} \mathbb{I}_{k - 1} \right\}
= \exp \left\{ -\phi^2 \left(\frac{c^k}{\sqrt{c^k}} \right) J_c(f) \left(\frac{(\delta + p)N}{(1 - |\beta|)^2} + \frac{m}{(1 + |\beta|)^2} \right) \right\} \mathbb{E} \theta \mathbb{E} \left\{ \phi \left(\frac{c^k}{\sqrt{c^k}} \right) M_k \left((l + N)(1 + \beta \text{sgn} f) \dot{f}; \eta \left(c^{k-1} \right) \right) \right\}.
$$

By Lemma [5] we get

$$
M_k \left((l + N)(1 + \beta \text{sgn} f) \dot{f}; \eta \left(c^{k-1} \right) \right) \leq \frac{(l + N)^2}{2(1 - |\beta|)^2} \int_{1/c}^{1} \left(1 + \beta \text{sgn} f \right)^2 \dot{f}^2 \, ds
= \frac{(l + N)^2}{(1 - |\beta|)^2} J_c(f)
$$
almost surely. Hence

\[
J_k^1(\delta) \leq \exp \left\{ -\phi^2 (c^k) J_c(f) \left[(\delta + p)N + \frac{m}{(1 + |\beta|^2)} \right] - \frac{(l + N)^2}{(1 + |\beta|^2)} \right\} E \theta
\]

\[
= \exp \left\{ \phi^2 (c^k) J_c(f) \left[\frac{l^2 - m^2}{(1 + |\beta|^2)} \right] - \frac{(\delta + p)N - (l + N)^2}{(1 - |\beta|^2)} + \frac{m + l^2 - m^2}{(1 + |\beta|^2)} \right\} E \theta
\]

(36)

\[
= \exp \left\{ \phi^2 (c^k) J_c(f) \left[\frac{l^2 - m^2}{(1 + |\beta|^2)} J_c(f) \right] \right\} \times \exp \left\{ -\phi^2 (c^k) J_c(f) \left[(\delta + p - 2l)N - N^2 \right] + K_1 \right\} E \theta
\]

\[
= \exp \left\{ \phi^2 (c^k) J_c(f) \left[\frac{l^2 - m^2}{(1 + |\beta|^2)} J_c(f) \right] \right\} \cdot \tilde{b}_k(\delta) E \theta
\]

for

\[
\tilde{b}_k(\delta) = \exp \left\{ -\phi^2 (c^k) J_c(f) \left[(\delta + p - 2l)N - N^2 \right] + K_1 \right\}.
\]

Since \(K_1 > 0 \), the expression in the square brackets on the right hand side of the definition of \(\tilde{b}_k(\delta) \) is positive for some \(N > 0 \). For such a number \(N \),

\[
\lim_{k \to \infty} \tilde{b}_k(\delta) = 0.
\]

Similarly,

\[
J_k^2(\delta) \leq \exp \left\{ \phi^2 (c^k) \frac{l^2 - m^2}{(1 + |\beta|^2)} J_c(f) \right\} \cdot \tilde{b}_k(\delta) E \theta,
\]

where

\[
\lim_{k \to \infty} \tilde{b}_k(\delta) = 0.
\]

Now Lemma holds with \(b_k(\delta) = \tilde{b}_k(\delta) + \hat{b}_k(\delta) \) for some \(N \).

\[\square \]

Lemma 8. Let \(f \in K_G \) be an arbitrary function such that \(2J(f) = h^2 < G^2 \). Then there are numbers \(c > 1 \) and \(v > 0 \) such that

\[
P(C_k|I_{k-1}) \geq \frac{1}{2} \exp \left\{ -\phi^2 (c^k) \left(\frac{G^2}{2} - v \right) \right\}
\]

almost surely for sufficiently large \(k \).

Proof. Let \(\theta < I_{k-1} \) be an arbitrary positive bounded random variable. Then

\[
E \theta I_{C_k}(\omega) = E \theta \rho_k(l, m) I_{C_k}(\omega)
\]

\[
\times \exp \left\{ -l \frac{\phi \left(c^k \right)}{\sqrt{c^k}} \int_{c^{k-1}}^{c^k} 1 + \beta \frac{\text{sgn} f \left(\frac{s}{c^k} \right)}{\sqrt{c^k}} \int \frac{f \left(\frac{s}{c^k} \right) dw(s)}{1 + \beta \text{sgn} \eta(s)} \int \frac{f \left(\frac{s}{c^k} \right) dw(s)}{1 + \beta \text{sgn} \eta(s)} \int \frac{f \left(\frac{s}{c^k} \right) dw(s)}{1 + \beta \text{sgn} \eta(s)} \right\}
\]

\[
+ \frac{m \phi^2 \left(c^k \right)}{2c^k} \int_{c^{k-1}}^{c^k} \frac{(1 + \beta \text{sgn} f \left(\frac{s}{c^k} \right))^2 f^2 \left(\frac{s}{c^k} \right) ds}{(1 + \beta \text{sgn} \eta(s))^2}
\]
\[
\geq \exp \left\{ \phi^2 (c^k) \left[\frac{m J_c(f)}{(1 + |\beta|)^2} - \frac{pl J_c(f)}{(1 - |\beta|)^2} \right] \right\} \\
\times E \theta \rho_k(l, m) I_{C_k}(\omega)
\]
\[
\times \exp \left\{ -k \frac{\phi(c^k)}{\sqrt{c^k}} \int_{c_k-1}^{c_k} \frac{1 + \beta \text{sgn} f\left(\frac{s}{c^k}\right)}{1 + \beta \text{sgn} \eta(s)} f\left(\frac{s}{c^k}\right) dw(s) \\
+ pl \frac{\phi^2(c^k)}{2(1 - |\beta|)^2 c^k} \int_{c_k-1}^{c_k} \left(1 + \beta \text{sgn} f\left(\frac{s}{c^k}\right)\right)^2 f^2\left(\frac{s}{c^k}\right) ds \right\}
\]
\[
\geq \exp \left\{ \phi^2 (c^k) J_c(f) \left[\frac{m}{(1 + |\beta|)^2} - \frac{pl}{(1 - |\beta|)^2} \right] \right\} \\
\times E \theta \rho_k(l, m) I_{C_k}(\omega) I_{L_k(\delta)}(\omega)
\]
\[
\times \exp \left\{ -k \frac{\phi(c^k)}{\sqrt{c^k}} \int_{c_k-1}^{c_k} \frac{1 + \beta \text{sgn} f\left(\frac{s}{c^k}\right)}{1 + \beta \text{sgn} \eta(s)} f\left(\frac{s}{c^k}\right) dw(s) \\
- pl \frac{\phi^2(c^k)}{2(1 - |\beta|)^2 c^k} \int_{c_k-1}^{c_k} \left(1 + \beta \text{sgn} f\left(\frac{s}{c^k}\right)\right)^2 f^2\left(\frac{s}{c^k}\right) ds \right\}
\]
\[
\geq \exp \left\{ \phi^2 (c^k) J_c(f) \left[\frac{m}{(1 + |\beta|)^2} - \frac{pl}{(1 - |\beta|)^2} - \frac{\delta l}{(1 - |\beta|)^2} \right] \right\} \\
\times E \theta \rho_k(l, m) \left(1 - I_{\Omega \setminus C_k}(\omega) - I_{\Omega \setminus L_k(\delta)}(\omega)\right).
\]

In the above reasoning we used the inequalities \(1 \geq I_{L_k(\delta)}(\omega)\) and

\[
\exp\{-a\} I_{|a|<b} \geq \exp\{-b\} I_{|a|<b}.
\]

Since \(I_{C_k}(\omega) I_{L_k(\delta)}(\omega) \geq 1 - I_{\Omega \setminus C_k}(\omega) - I_{\Omega \setminus L_k(\delta)}(\omega)\), we obtain

\[
\mathbb{E} \theta I_{C_k}(\omega) \geq \mathbb{E} \theta \rho_k(l, m) \left(1 - I_{\Omega \setminus C_k}(\omega) - I_{\Omega \setminus L_k(\delta)}(\omega)\right).
\]

Then equality (30) implies that

\[
\mathbb{E} \theta \rho_k(l, m) = \mathbb{E} \{ \theta \mathbb{E} \{ \rho_k(l, m) \mid \mathcal{S}_{k-1} \}\}
= \mathbb{E} \left\{ \theta \mathbb{E} \left\{ \exp \left[\frac{\phi^2 (c^k)}{2 c^k} \int_{c_k-1}^{c_k} \left(l^2 - m^2\right) \frac{1 + \beta \text{sgn} f^2}{1 + \beta \text{sgn} \eta^2} f^2 ds \mid \mathcal{S}_{k-1} \right] \right\} \right\}.
\]

It is clear that

\[
l^2 - m^2 > l^2 \frac{(1 + |\beta|)^2}{(1 - |\beta|)^2} - m.
\]

Considering the left hand side of property A2, we conclude that

\[
l^2 \frac{(1 + |\beta|)^2}{(1 - |\beta|)^2} - m > 0,
\]

whence

\[
l^2 - m^2 > 0.
\]

Hence

\[
\mathbb{E} \theta \rho_k(l, m) \geq \exp \left\{ \phi^2 (c^k) \frac{l^2 - m^2}{(1 + |\beta|)^2} J_c(f) \right\} \mathbb{E} \theta.
\]
We continue the proof by using the latter bound and applying Lemmas 6 and 7:

\[
\mathbb{E} \theta I_{C_k}(\omega) \geq \exp \left\{ \phi^2 \left(c^k \right) J_c(f) \left(\frac{m}{(1 + |\beta|)^2} - \frac{pl + \delta l}{(1 - |\beta|)^2} \right) \right\}
\times \exp \left\{ \phi^2 \left(c^k \right) \frac{l^2 - m^2}{(1 + |\beta|)^2} J_c(f) \right\} \left(1 - \sum_{i=1}^{n(\Delta)} a_k(i) - b_k(\delta) \right) \mathbb{E} \theta
\geq \exp \left\{ -\phi^2 \left(c^k \right) J_c(f) \left(\frac{m^2 - l^2 - m}{(1 + |\beta|)^2} + \frac{pl + \delta l}{(1 - |\beta|)^2} \right) \right\} \mathbb{E} \theta.
\]

Then we use property A3:

\[
(37) \quad \mathbb{E} \theta I_{C_k}(\omega) \geq \exp \left\{ -\phi^2 \left(c^k \right) J_c(f) \left(1 + \frac{\delta l}{(1 - |\beta|)^2} \right) \right\} \mathbb{E} \theta.
\]

It is clear that

\[
J_c(f) \left(1 + \frac{\delta l}{(1 - |\beta|)^2} \right) \leq \left(1 + \frac{\delta l}{(1 - |\beta|)^2} \right) \frac{h^2}{2}.
\]

Choose

\[
\delta < \frac{G^2 - h^2 (1 - |\beta|)^2}{3h^2 l}.
\]

The latter inequality implies that

\[
(38) \quad J_c(f) \left(1 + \frac{\delta l}{(1 - |\beta|)^2} \right) \leq \frac{G^2}{2} - v,
\]

where \(v = \frac{1}{3}(G^2 - h^2) \). Now Lemma 8 follows from inequalities (37) and (38).

The Lipschitz property of the function \(\kappa \) (see definition (7)) yields the following result.

Lemma 9. Assume that

\[
P \left\{ \lim_{n \to \infty} \sup_{t \in [0,1]} |f_n(t) - g(t)| = 0 \right\} = 1
\]

for all one-dimensional functions \(\{f_n\} \) and \(g \). Then

\[
P \left\{ \lim_{n \to \infty} \sup_{t \in [0,1]} |\kappa(f_n(t)) - \kappa(g(t))| = 0 \right\} = 1,
\]

where the function \(\kappa \) is defined by (7).

Proof of Theorem 1. Using Theorem 2 we prove that, for an arbitrary function \(f \in \mathcal{K}_G \), there exists a subsequence \(\{T_m\} \) such that

\[
P \left\{ \lim_{T_m \to \infty} \sup_{t \in [0,1]} |\eta_{T_m}(t) - f(t)| = 0 \right\} = 1.
\]

Then Lemma 9 and relations (7)–(9) complete the proof of Theorem 1.

Bibliography

Department of Probability Theory and Mathematical Statistics, Institute for Applied Mathematics and Mechanics, National Academy of Science of Ukraine, Luxemburg Street, 74, Donetsk, 83114, Ukraine

E-mail address: ikrykun@iamm.ac.donetsk.ua

Received 09/NOV/2010

Translated by S. KVASKO