Singularity and fine fractal properties of a certain class of infinite Bernoulli convolutions with an essential intersection

Authors:
M. V. Lebid’ and G. M. Torbin

Translated by:
N. Semenov

Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom **87** (2012).

Journal:
Theor. Probability and Math. Statist. **87** (2013), 99-115

MSC (2010):
Primary 60G30, 11K55, 28A80

DOI:
https://doi.org/10.1090/S0094-9000-2014-00907-2

Published electronically:
March 21, 2014

MathSciNet review:
3241449

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the probability distribution of a random variable represented in the form of an infinite series

Bernoulli convolution with essential intersections (that is, almost all with respect to the Hausdorff-Besicovitch dimension points of the spectrum have continuum many different expansions of the form , where ). Our main attention is paid to the studies of fractal properties of singularly continuous probability measures . In particular, fractal properties of the spectra (minimal closed supports of the above measures) and minimal in the sense of the Hausdorff-Besicovitch dimension dimensional supports of such probability distributions are studied in detail.

**1.**S. Albeverio and G. Torbin,*On fine fractal properties of generalized infinite Bernoulli convolutions*, Bull. Sci. Math.**132**(2008), no. 8, 711-727. MR**2474489 (2010e:28006)****2.**S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G. Torbin,*On fine structure of singularly continuous probability measures and random variables with independent -symbols*, Methods Funct. Anal. Topology**17**(2011), no. 2, 97-111. MR**2849470 (2012g:60006)****3.**S. Albeverio and G. Torbin,*Image measures of infinite product measures and generalized Bernoulli convolutions*, Proceedings of Dragomanov National Pedagogical University, ser. 1, Physics and Mathematics**5**(2004), 248-264.**4.**S. Albeverio and G. Torbin,*Fractal properties of singularly continuous probability distributions with independent -digits*, Bull. Sci. Math.**129**(2005), no. 4, 356-367. MR**2134126 (2006b:28013)****5.**J. C. Alexander and D. Zagier,*The entropy of a certain infinitely convolved Bernoulli measure*, J. London Math. Soc.**44**(1991), 121-134. MR**1122974 (92g:28035)****6.**P. Billingsley,*Hausdorff dimension in probability theory II*, Ill. J. Math.**5**(1961), 291-198. MR**0120339 (22:11094)****7.**M. Cooper,*Dimension, measure and infinite Bernoulli convolutions*, Math. Proc. Cambr. Phil. Soc.**124**(1998), 135-149. MR**1620520 (99h:28013)****8.**P. Erdős,*On a family of symmetric Bernoulli convolutions*, Amer. J. Math.**61**(1939), 974-975. MR**0000311 (1:52a)****9.**K. J. Falconer,*Fractal Geometry*, John Wiley & Sons, 1990. MR**1102677 (92j:28008)****10.**A. M. Garsia,*Arithmetic properties of Bernoulli convolutions*, Trans. Amer. Math. Soc.**102**(1962), 409-432. MR**0137961 (25:1409)****11.**Ya. Gontcharenko, M. Pratsiovytyi, and G. Torbin,*On fractal properties of some Bernoulli convolutions*, Prob. Theory and Math. Statist.**79**(2009), 39-55. MR**2494534 (2010d:60101)****12.**B. Jessen and A. Wintner,*Distribution function and Riemann Zeta-function*, Trans. Amer. Math. Soc.**38**(1935), 48-88. MR**1501802****13.**P. Lévy,*Sur les séries dont les termes sont des variables indépendantes*, Studia Math.**3**(1931), 119-155.**14.**Y. Peres, W. Schlag, and B. Solomyak,*Sixty years of Bernoulli convolutions*, Fractal Geometry and Stochastics II, Progress in Probab., vol. 46, 2000, pp. 39-65. MR**1785620 (2001m:42020)****15.**Y. Peres and B. Solomyak,*Absolute continuity of Bernoulli convolutions, a simple proof*, Math. Res. Lett.**3**(1996), no. 2, 231-239. MR**1386842 (97f:28006)****16.**B. Solomyak,*On the random series (an Erdős problem)*, Ann. Math.**142**(1995), 611-625. MR**1356783 (97d:11125)****17.**M. V. Pratsevytyĭ and G. M. Torbin,*A certain class of Jessen-Wintner type random variables*, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (1998), no. 4, 48-54. (Ukrainian)**18.**M. V. Pratsevytyĭ,*Fractal Approach in Studies of Singular Distributions*, Dragomanov National Pedagogical University Publishing House, Kyiv, 1998. (Ukrainian)**19.**G. M. Torbin,*Multifractal analysis of singularly continuous probability measures*, Ukrain. Mat. Zh.**57**(2005), no. 5, 837-857; English transl. in Ukrainian Math. J.**57**(2005), no. 5, 837-857. MR**2209816 (2007f:28010)**

Retrieve articles in *Theory of Probability and Mathematical Statistics*
with MSC (2010):
60G30,
11K55,
28A80

Retrieve articles in all journals with MSC (2010): 60G30, 11K55, 28A80

Additional Information

**M. V. Lebid’**

Affiliation:
Department of Mathematical Analysis and Differential Equations, Dragomanov National Pedagogical University, Pirogov Street, 9, Kyiv 01130, Ukraine

Email:
mykola.lebid@gmail.com

**G. M. Torbin**

Affiliation:
Department of Mathematical Analysis and Differential Equations, Dragomanov National Pedagogical University, Pirogov Street, 9, Kyiv 01130, Ukraine

Email:
torbin7@gmail.com, torbin@iam.uni-bonn.de

DOI:
https://doi.org/10.1090/S0094-9000-2014-00907-2

Keywords:
Infinite Bernoulli convolutions,
fractals,
singularly continuous probability measures,
Hausdorff--Besicovitch dimension of a set,
Hausdorff dimension of a measure,
faithful covering systems

Received by editor(s):
April 9, 2012

Published electronically:
March 21, 2014

Additional Notes:
The research of the first named author was partially supported by the DFG Grant 436 113/97

The research of the second named author was partially supported by the DFG Grants 436 UKR 113/97, DFG KO 1989/6-1, and Humboldt Foundation

Article copyright:
© Copyright 2014
American Mathematical Society