Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

Request Permissions   Purchase Content 
 
 

 

Singularity and fine fractal properties of a certain class of infinite Bernoulli convolutions with an essential intersection


Authors: M. V. Lebid’ and G. M. Torbin
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 87 (2012).
Journal: Theor. Probability and Math. Statist. 87 (2013), 99-115
MSC (2010): Primary 60G30, 11K55, 28A80
DOI: https://doi.org/10.1090/S0094-9000-2014-00907-2
Published electronically: March 21, 2014
MathSciNet review: 3241449
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the probability distribution of a random variable $ \xi $ represented in the form of an infinite series

$\displaystyle \xi = \sum _{k=1}^\infty \xi _k a_k $

is singular, where $ \xi _k$ are independent Bernoulli random variables and where the sequence $ \{a_k\}$ is such that the series $ \sum _{k=1}^\infty a_k$ converges, $ a_k\ge 0$ for all $ k\ge 1$, and, for an arbitrary $ k\in \mathbf {N}$, there exists $ s_{k} \in \mathbf {N}\cup \{0\}$ for which $ s_k>0$ for infinitely many indices $ k$ and $ a_{k} = a_{k+1} = \dots = a_{k+s_{k} } \ge r_{k+s_{k} }$, where $ r_k$ is the tail of the series, namely

$\displaystyle r_k=\sum _{i=k+1}^\infty a_i. $

Under these assumptions, it is shown that the corresponding distribution is a
Bernoulli convolution with essential intersections (that is, almost all with respect to the Hausdorff-Besicovitch dimension points of the spectrum have continuum many different expansions of the form $ \sum _{k=1}^\infty \omega _k a_k$, where $ \omega _k \in \{0,1\}$). Our main attention is paid to the studies of fractal properties of singularly continuous probability measures $ \mu _{\xi }$. In particular, fractal properties of the spectra (minimal closed supports of the above measures) and minimal in the sense of the Hausdorff-Besicovitch dimension dimensional supports of such probability distributions are studied in detail.

References [Enhancements On Off] (What's this?)

  • 1. S. Albeverio and G. Torbin, On fine fractal properties of generalized infinite Bernoulli convolutions, Bull. Sci. Math. 132 (2008), no. 8, 711-727. MR 2474489 (2010e:28006)
  • 2. S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G. Torbin, On fine structure of singularly continuous probability measures and random variables with independent $ \widetilde {Q}$-symbols, Methods Funct. Anal. Topology 17 (2011), no. 2, 97-111. MR 2849470 (2012g:60006)
  • 3. S. Albeverio and G. Torbin, Image measures of infinite product measures and generalized Bernoulli convolutions, Proceedings of Dragomanov National Pedagogical University, ser. 1, Physics and Mathematics 5 (2004), 248-264.
  • 4. S. Albeverio and G. Torbin, Fractal properties of singularly continuous probability distributions with independent $ Q^{*}$-digits, Bull. Sci. Math. 129 (2005), no. 4, 356-367. MR 2134126 (2006b:28013)
  • 5. J. C. Alexander and D. Zagier, The entropy of a certain infinitely convolved Bernoulli measure, J. London Math. Soc. 44 (1991), 121-134. MR 1122974 (92g:28035)
  • 6. P. Billingsley, Hausdorff dimension in probability theory II, Ill. J. Math. 5 (1961), 291-198. MR 0120339 (22:11094)
  • 7. M. Cooper, Dimension, measure and infinite Bernoulli convolutions, Math. Proc. Cambr. Phil. Soc. 124 (1998), 135-149. MR 1620520 (99h:28013)
  • 8. P. Erdős, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974-975. MR 0000311 (1:52a)
  • 9. K. J. Falconer, Fractal Geometry, John Wiley & Sons, 1990. MR 1102677 (92j:28008)
  • 10. A. M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409-432. MR 0137961 (25:1409)
  • 11. Ya. Gontcharenko, M. Pratsiovytyi, and G. Torbin, On fractal properties of some Bernoulli convolutions, Prob. Theory and Math. Statist. 79 (2009), 39-55. MR 2494534 (2010d:60101)
  • 12. B. Jessen and A. Wintner, Distribution function and Riemann Zeta-function, Trans. Amer. Math. Soc. 38 (1935), 48-88. MR 1501802
  • 13. P. Lévy, Sur les séries dont les termes sont des variables indépendantes, Studia Math. 3 (1931), 119-155.
  • 14. Y. Peres, W. Schlag, and B. Solomyak, Sixty years of Bernoulli convolutions, Fractal Geometry and Stochastics II, Progress in Probab., vol. 46, 2000, pp. 39-65. MR 1785620 (2001m:42020)
  • 15. Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof, Math. Res. Lett. 3 (1996), no. 2, 231-239. MR 1386842 (97f:28006)
  • 16. B. Solomyak, On the random series $ \sum \pm \lambda ^{n}$ (an Erdős problem), Ann. Math. 142 (1995), 611-625. MR 1356783 (97d:11125)
  • 17. M. V. Pratsevytyĭ and G. M. Torbin, A certain class of Jessen-Wintner type random variables, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (1998), no. 4, 48-54. (Ukrainian)
  • 18. M. V. Pratsevytyĭ, Fractal Approach in Studies of Singular Distributions, Dragomanov National Pedagogical University Publishing House, Kyiv, 1998. (Ukrainian)
  • 19. G. M. Torbin, Multifractal analysis of singularly continuous probability measures, Ukrain. Mat. Zh. 57 (2005), no. 5, 837-857; English transl. in Ukrainian Math. J. 57 (2005), no. 5, 837-857. MR 2209816 (2007f:28010)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G30, 11K55, 28A80

Retrieve articles in all journals with MSC (2010): 60G30, 11K55, 28A80


Additional Information

M. V. Lebid’
Affiliation: Department of Mathematical Analysis and Differential Equations, Dragomanov National Pedagogical University, Pirogov Street, 9, Kyiv 01130, Ukraine
Email: mykola.lebid@gmail.com

G. M. Torbin
Affiliation: Department of Mathematical Analysis and Differential Equations, Dragomanov National Pedagogical University, Pirogov Street, 9, Kyiv 01130, Ukraine
Email: torbin7@gmail.com, torbin@iam.uni-bonn.de

DOI: https://doi.org/10.1090/S0094-9000-2014-00907-2
Keywords: Infinite Bernoulli convolutions, fractals, singularly continuous probability measures, Hausdorff--Besicovitch dimension of a set, Hausdorff dimension of a measure, faithful covering systems
Received by editor(s): April 9, 2012
Published electronically: March 21, 2014
Additional Notes: The research of the first named author was partially supported by the DFG Grant 436 113/97
The research of the second named author was partially supported by the DFG Grants 436 UKR 113/97, DFG KO 1989/6-1, and Humboldt Foundation
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society