Singularity and fine fractal properties of a certain class of infinite Bernoulli convolutions with an essential intersection
Authors:
M. V. Lebid’ and G. M. Torbin
Translated by:
N. Semenov
Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom 87 (2012).
Journal:
Theor. Probability and Math. Statist. 87 (2013), 99115
MSC (2010):
Primary 60G30, 11K55, 28A80
Published electronically:
March 21, 2014
MathSciNet review:
3241449
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove that the probability distribution of a random variable represented in the form of an infinite series is singular, where are independent Bernoulli random variables and where the sequence is such that the series converges, for all , and, for an arbitrary , there exists for which for infinitely many indices and , where is the tail of the series, namely Under these assumptions, it is shown that the corresponding distribution is a Bernoulli convolution with essential intersections (that is, almost all with respect to the HausdorffBesicovitch dimension points of the spectrum have continuum many different expansions of the form , where ). Our main attention is paid to the studies of fractal properties of singularly continuous probability measures . In particular, fractal properties of the spectra (minimal closed supports of the above measures) and minimal in the sense of the HausdorffBesicovitch dimension dimensional supports of such probability distributions are studied in detail.
 1.
Sergio
Albeverio and Grygoriy
Torbin, On fine fractal properties of generalized infinite
Bernoulli convolutions, Bull. Sci. Math. 132 (2008),
no. 8, 711–727 (English, with English and French summaries). MR 2474489
(2010e:28006), 10.1016/j.bulsci.2008.03.002
 2.
S.
Albeverio, V.
Koshmanenko, M.
Pratsiovytyi, and G.
Torbin, On fine structure of singularly continuous probability
measures and random variables with independent 𝑄symbols,
Methods Funct. Anal. Topology 17 (2011), no. 2,
97–111. MR
2849470 (2012g:60006)
 3.
S. Albeverio and G. Torbin, Image measures of infinite product measures and generalized Bernoulli convolutions, Proceedings of Dragomanov National Pedagogical University, ser. 1, Physics and Mathematics 5 (2004), 248264.
 4.
Sergio
Albeverio and Grygoriy
Torbin, Fractal properties of singular probability distributions
with independent 𝑄*digits, Bull. Sci. Math.
129 (2005), no. 4, 356–367 (English, with
English and French summaries). MR 2134126
(2006b:28013), 10.1016/j.bulsci.2004.12.001
 5.
J.
C. Alexander and Don
Zagier, The entropy of a certain infinitely convolved Bernoulli
measure, J. London Math. Soc. (2) 44 (1991),
no. 1, 121–134. MR 1122974
(92g:28035), 10.1112/jlms/s244.1.121
 6.
Patrick
Billingsley, Hausdorff dimension in probability theory. II,
Illinois J. Math. 5 (1961), 291–298. MR 0120339
(22 #11094)
 7.
Michael
J. P. Cooper, Dimension, measure and infinite Bernoulli
convolutions, Math. Proc. Cambridge Philos. Soc. 124
(1998), no. 1, 135–149. MR 1620520
(99h:28013), 10.1017/S0305004197002442
 8.
Paul
Erdös, On a family of symmetric Bernoulli convolutions,
Amer. J. Math. 61 (1939), 974–976. MR 0000311
(1,52a)
 9.
Kenneth
Falconer, Fractal geometry, John Wiley & Sons, Ltd.,
Chichester, 1990. Mathematical foundations and applications. MR 1102677
(92j:28008)
 10.
Adriano
M. Garsia, Arithmetic properties of Bernoulli
convolutions, Trans. Amer. Math. Soc. 102 (1962), 409–432.
MR
0137961 (25 #1409), 10.1090/S00029947196201379615
 11.
Ya.
V. Goncharenko, M.
V. Prats′oviti&ibreve;, and G.
M. Torbin, Fractal properties of some Bernoulli
convolutions, Teor. &Ibreve;movīr. Mat. Stat.
79 (2008), 34–49 (Ukrainian, with Russian summary);
English transl., Theory Probab. Math. Statist. 79 (2009), 39–55. MR 2494534
(2010d:60101), 10.1090/S0094900009007790
 12.
Børge
Jessen and Aurel
Wintner, Distribution functions and the Riemann
zeta function, Trans. Amer. Math. Soc.
38 (1935), no. 1,
48–88. MR
1501802, 10.1090/S00029947193515018025
 13.
P. Lévy, Sur les séries dont les termes sont des variables indépendantes, Studia Math. 3 (1931), 119155.
 14.
Yuval
Peres, Wilhelm
Schlag, and Boris
Solomyak, Sixty years of Bernoulli convolutions, Fractal
geometry and stochastics, II (Greifswald/Koserow, 1998) Progr. Probab.,
vol. 46, Birkhäuser, Basel, 2000, pp. 39–65. MR 1785620
(2001m:42020)
 15.
Yuval
Peres and Boris
Solomyak, Absolute continuity of Bernoulli convolutions, a simple
proof, Math. Res. Lett. 3 (1996), no. 2,
231–239. MR 1386842
(97f:28006), 10.4310/MRL.1996.v3.n2.a8
 16.
Boris
Solomyak, On the random series ∑±𝜆ⁿ (an
Erdős problem), Ann. of Math. (2) 142 (1995),
no. 3, 611–625. MR 1356783
(97d:11125), 10.2307/2118556
 17.
M. V. Pratsevytyĭ and G. M. Torbin, A certain class of JessenWintner type random variables, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (1998), no. 4, 4854. (Ukrainian)
 18.
M. V. Pratsevytyĭ, Fractal Approach in Studies of Singular Distributions, Dragomanov National Pedagogical University Publishing House, Kyiv, 1998. (Ukrainian)
 19.
G.
M. Torbīn, Multifractal analysis of singularly continuous
probability measures, Ukraïn. Mat. Zh. 57
(2005), no. 5, 706–721 (Ukrainian, with English and Ukrainian
summaries); English transl., Ukrainian Math. J. 57
(2005), no. 5, 837–857. MR 2209816
(2007f:28010), 10.1007/s1125300502334
 1.
 S. Albeverio and G. Torbin, On fine fractal properties of generalized infinite Bernoulli convolutions, Bull. Sci. Math. 132 (2008), no. 8, 711727. MR 2474489 (2010e:28006)
 2.
 S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G. Torbin, On fine structure of singularly continuous probability measures and random variables with independent symbols, Methods Funct. Anal. Topology 17 (2011), no. 2, 97111. MR 2849470 (2012g:60006)
 3.
 S. Albeverio and G. Torbin, Image measures of infinite product measures and generalized Bernoulli convolutions, Proceedings of Dragomanov National Pedagogical University, ser. 1, Physics and Mathematics 5 (2004), 248264.
 4.
 S. Albeverio and G. Torbin, Fractal properties of singularly continuous probability distributions with independent digits, Bull. Sci. Math. 129 (2005), no. 4, 356367. MR 2134126 (2006b:28013)
 5.
 J. C. Alexander and D. Zagier, The entropy of a certain infinitely convolved Bernoulli measure, J. London Math. Soc. 44 (1991), 121134. MR 1122974 (92g:28035)
 6.
 P. Billingsley, Hausdorff dimension in probability theory II, Ill. J. Math. 5 (1961), 291198. MR 0120339 (22:11094)
 7.
 M. Cooper, Dimension, measure and infinite Bernoulli convolutions, Math. Proc. Cambr. Phil. Soc. 124 (1998), 135149. MR 1620520 (99h:28013)
 8.
 P. Erdős, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974975. MR 0000311 (1:52a)
 9.
 K. J. Falconer, Fractal Geometry, John Wiley & Sons, 1990. MR 1102677 (92j:28008)
 10.
 A. M. Garsia, Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc. 102 (1962), 409432. MR 0137961 (25:1409)
 11.
 Ya. Gontcharenko, M. Pratsiovytyi, and G. Torbin, On fractal properties of some Bernoulli convolutions, Prob. Theory and Math. Statist. 79 (2009), 3955. MR 2494534 (2010d:60101)
 12.
 B. Jessen and A. Wintner, Distribution function and Riemann Zetafunction, Trans. Amer. Math. Soc. 38 (1935), 4888. MR 1501802
 13.
 P. Lévy, Sur les séries dont les termes sont des variables indépendantes, Studia Math. 3 (1931), 119155.
 14.
 Y. Peres, W. Schlag, and B. Solomyak, Sixty years of Bernoulli convolutions, Fractal Geometry and Stochastics II, Progress in Probab., vol. 46, 2000, pp. 3965. MR 1785620 (2001m:42020)
 15.
 Y. Peres and B. Solomyak, Absolute continuity of Bernoulli convolutions, a simple proof, Math. Res. Lett. 3 (1996), no. 2, 231239. MR 1386842 (97f:28006)
 16.
 B. Solomyak, On the random series (an Erdős problem), Ann. Math. 142 (1995), 611625. MR 1356783 (97d:11125)
 17.
 M. V. Pratsevytyĭ and G. M. Torbin, A certain class of JessenWintner type random variables, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki (1998), no. 4, 4854. (Ukrainian)
 18.
 M. V. Pratsevytyĭ, Fractal Approach in Studies of Singular Distributions, Dragomanov National Pedagogical University Publishing House, Kyiv, 1998. (Ukrainian)
 19.
 G. M. Torbin, Multifractal analysis of singularly continuous probability measures, Ukrain. Mat. Zh. 57 (2005), no. 5, 837857; English transl. in Ukrainian Math. J. 57 (2005), no. 5, 837857. MR 2209816 (2007f:28010)
Similar Articles
Retrieve articles in Theory of Probability and Mathematical Statistics
with MSC (2010):
60G30,
11K55,
28A80
Retrieve articles in all journals
with MSC (2010):
60G30,
11K55,
28A80
Additional Information
M. V. Lebid’
Affiliation:
Department of Mathematical Analysis and Differential Equations, Dragomanov National Pedagogical University, Pirogov Street, 9, Kyiv 01130, Ukraine
Email:
mykola.lebid@gmail.com
G. M. Torbin
Affiliation:
Department of Mathematical Analysis and Differential Equations, Dragomanov National Pedagogical University, Pirogov Street, 9, Kyiv 01130, Ukraine
Email:
torbin7@gmail.com, torbin@iam.unibonn.de
DOI:
http://dx.doi.org/10.1090/S009490002014009072
PII:
S 00949000(2014)009072
Keywords:
Infinite Bernoulli convolutions,
fractals,
singularly continuous probability measures,
HausdorffBesicovitch dimension of a set,
Hausdorff dimension of a measure,
faithful covering systems
Received by editor(s):
April 9, 2012
Published electronically:
March 21, 2014
Additional Notes:
The research of the first named author was partially supported by the DFG Grant 436 113/97
The research of the second named author was partially supported by the DFG Grants 436 UKR 113/97, DFG KO 1989/61, and Humboldt Foundation
Article copyright:
© Copyright 2014
American Mathematical Society
