Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Discrete representations of second order random functions. II


Author: O. I. Ponomarenko
Translated by: S. Kvasko
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 87 (2012).
Journal: Theor. Probability and Math. Statist. 87 (2013), 171-183
MSC (2010): Primary 60G10, 60G15; Secondary 60G57
DOI: https://doi.org/10.1090/S0094-9000-2014-00911-4
Published electronically: March 21, 2014
MathSciNet review: 3241454
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This is a continuation of the author's 2012 paper. We study the discrete representations of a general basis type for a second order random function assuming scalar or vector values.


References [Enhancements On Off] (What's this?)

  • 1. I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes, vol. 1, ``Nauka'', Moscow, 1971; English transl., Springer-Verlag, Berlin-Heidelberg, 2004.
  • 2. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Random processes, ``Nauka'', Moscow, 1977; English transl., Saunders, Philadelphia, 1969. MR 0247660 (40:923)
  • 3. A. V. Bulinskiĭ and A. N. Shiryaev, Theory of Stochastic Processes ``Fizmatgiz'', Moscow, 2003. (Russian)
  • 4. D. V. Gusak, O. G. Kukush, O. M. Kulik, Yu. S. Mishura, A. Yu. Pilipenko, Theory of Stochastic Processes: With Applications to Financial Mathematics and Risk Theory, Kiev University Press, Kyiv, 2008; English transl., Springer-Verlag, New York, 2010. MR 2572942 (2011f:60069)
  • 5. B. V. Dovgaĭ, Yu. V. Kozachenko, and I. V. Rozora, Modelling Stochastic Processes in Physical Systems, ``Zadruga'', Kyiv, 2010. (Ukrainian)
  • 6. I. G. Petrovskiĭ, Lectures in the Theory of Integral Equations, ``Nauka'', Moscow, 1965. (Russian) MR 0352904 (50:5390)
  • 7. A. M. Yaglom, Second-order homogeneous random fields, Proc. of Fourth Berkeley Symp. Math. Stat. Probab., vol. II, Univ. Calif. Press, 1961, pp. 593-622. MR 0146880 (26:4399)
  • 8. M. G. Kreĭn, Hermitian positive kernels in homogeneous spaces. I, Ukr. Mat. Zh. I (1949), no. 4, 64-98. (Russian) MR 0051438 (14:480a)
  • 9. F. Riesz and B. Szökefalvi Nagy, Leçons d'analyse fonctionnelle, sixième édition, Akadémiai Kiadó, Budapest, 1972.
  • 10. O. I. Ponomarenko and Yu. D. Perun, Multidimensional weakly stationary random functions on semigroups, Teor. Imovir. Matem. Statyst. 73 (2006), 134-145; English transl. in Theory Probab. Math. Statist. 73 (2005), 151-162. MR 2213849 (2007b:60092)
  • 11. E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, American Mathematical Society, Providence, R.I., 1974. Third printing of the revised edition of 1957; American Mathematical Society Colloquium Publications, Vol. XXXI. MR 0423094 (54:11077)
  • 12. O. I. Ponomarenko, Second-order random linear functionals. I, Teor. Imovir. Matem. Statyst. 54 (1996), 137-146; English transl. in Theory Probab. Math. Statist. 54 (1997), 143-151. MR 1644594 (99h:60011)
  • 13. O. I. Ponomarenko, Integral representations of random functions with values in locally convex spaces, Teor. Imovir. Matem. Statyst. 46 (1992), 132-141; English transl. in Theory Probab. Math. Statist. 46 (1993), 129-136. MR 1196216 (93k:60123)
  • 14. M. L. Krasnov, A. I. Kiselev, and G. I. Makarenko, Integral Equations, ``Nauka'', Moscow, 1968. (Russian) MR 0265876 (42:785)
  • 15. M. L. Krasnov, Integral Equations, ``Nauka'', Moscow, 1968. (Russian) MR 0265876 (42:785)
  • 16. N. Dunford and J. T. Schwartz, Linear Operators, Part II. Spectral Theory, Wiley-Interscience, New York-London, 1963. MR 1009163 (90g:47001b)
  • 17. O. Ponomarenko and Yu. Perun, Multivariate random fields on some homogeneous spaces, Theory Stoch. Process. 14(30) (2008), no. 3-4, 104-113. MR 2498608 (2010h:60155)
  • 18. N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, ``Nauka'', Moscow, 1965; English transl., American Mathematical Society, Providence, R.I., 1968. MR 1177172 (93d:33013)
  • 19. O. I. Ponomarenko and Yu. D. Perun, Multi-dimensional additively stationary random functions on convex structures, Teor. Imovir. Matem. Statyst. 74 (2006), 118-130; English transl. in Theory Probab. Math. Statist. 74 (2007), 133-146. MR 2336784 (2008g:60103)
  • 20. A. I. Ponomarenko, Stochastic Problems of Optimization, Kiev University Press, Kiev, 1980. (Russian)
  • 21. O. I. Ponomarenko, Discrete representations of second order random functions. I, Teor. Imovir. Matem. Statyst. 86 (2012). MR 2986458

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G10, 60G15, 60G57

Retrieve articles in all journals with MSC (2010): 60G10, 60G15, 60G57


Additional Information

O. I. Ponomarenko
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue, 4E, Kiev 03127, Ukraine

DOI: https://doi.org/10.1090/S0094-9000-2014-00911-4
Keywords: Random functions defined on a compact topological space, generalized random functions assuming values in a Hilbert space, Karhunen--Lo\'eve type representations, basis type representations, Hilbert--Schmidt operators
Received by editor(s): September 8, 2011
Published electronically: March 21, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society