Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)



Diffusion approximation of systems with weakly ergodic Markov perturbations. II

Authors: A. Yu. Veretennikov and A. M. Kulik
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 88 (2013).
Journal: Theor. Probability and Math. Statist. 88 (2014), 1-17
MSC (2010): Primary 60H10, 60J10
Published electronically: July 24, 2014
MathSciNet review: 3112631
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is a continuation of the paper [A. Yu. Veretennikov and A. M. Kulik, Diffusion approximation for systems with weakly ergodic Markov perturbations. I, Theory Probab. Math. Statist.87 (2012), 13-29]. Some corollaries of the general results are given in several particular cases being of their own interest. An example of a process being a solution of a stochastic differential equation with a Lévy noise is considered; we show that the assumptions imposed on the process can effectively be verified.

References [Enhancements On Off] (What's this?)

  • 1. A. Yu. Veretennikov and A. M. Kulik, Diffusion approximation of systems with weakly ergodic Markov perturbations. I, Teor. Imovir. Mat. Stat. 87 (2012), 12-27; English transl. in Theory Probab. Math. Statist. 87 (2013), 13-29.
  • 2. T. Komorowski and A. Walczuk, Central limit theorem for Markov processes with spectral gap in the Wasserstein metric, Stochastic Process. Appl. 122 (2012), no. 5, 2155-2184. MR 2921976
  • 3. A. Yu. Veretennikov and A. M. Kulik, Extended Poisson equation for weakly ergodic Markov processes, Teor. Imovir. Mat. Stat. 85 (2011), 22-38; English transl. in Theory Probab. Math. Statist. 85, (2012) 23-39. MR 2933700 (2012m:60128)
  • 4. E. Pardoux and A. Yu. Veretennikov, On the Poisson equation and diffusion approximation. I, Ann. Probab. 29 (2001), 1061-1085. MR 1872736 (2002j:60120)
  • 5. R. L. Dobrushin, Prescribing a system of random variables by conditional distributions, Teor. Veroyatnost. Primenen. 15 (1970), no. 3, 469-497; English transl. in Theory Probab. Appl. 15 (1970), no. 3, 458-486. MR 0298716 (45:7765)
  • 6. A. Yu. Veretennikov, Coupling method for Markov chains under integral Doeblin type condition, Theory Stoch. Process. 8(24) (2002), no. 3-4, 383-391. MR 2027410 (2004j:60151)
  • 7. S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York, 1986. MR 838085 (88a:60130)
  • 8. V. S. Koroliuk and N. Limnios, Stochastic Systems in Merging Phase Space, World Scientific, New Jersey, 2005. MR 2205562 (2007a:60004)
  • 9. D. Down, S. P. Meyn, and R. L. Tweedie, Exponential and uniform ergodicity of Markov processes, Ann. Probab. 23 (1995), no. 4, 1671-1691. MR 1379163 (97c:60181)
  • 10. A. Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations, Stoch. Process. Appl. 70 (1997), 115-127. MR 1472961 (99k:60158)
  • 11. S. A. Klokov and A. Yu. Veretennikov, Sub-exponential mixing rate for a class of Markov chains, Math. Comm. 9 (2004), 9-26. MR 2076227 (2005f:60148)
  • 12. R. Douc, G. Fort, and A. Guillin, Subgeometric rates of convergence of $ f$-ergodic strong Markov processes, Stoch. Process. Appl. 119 (2009), no. 3, 897-923. MR 2499863 (2010j:60184)
  • 13. V. M. Zolotarev, Modern Theory of Summation of Random Variables, ``Nauka'', Moscow, 1986; English transl., VSP, Utrecht, The Netherlands, 1997. MR 1640024 (99m:60002)
  • 14. A. M. Kulik, Exponential ergodicity of the solutions to SDE's with a jump noise, Stoch. Proc. Appl. 119 (2009), 602-632. MR 2494006 (2010i:60176)
  • 15. G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. MR 1207136 (95g:60073)
  • 16. S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise (an Evolution Equation Approach), Cambridge University Press, Cambridge, 2007. MR 2356959 (2009b:60200)
  • 17. N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland Publ. Co., Amsterdam-Oxford-New York, 1981. MR 637061 (84b:60080)
  • 18. A. M. Kulik and N. N. Leonenko, Ergodicity and mixing bounds for the Fisher-Snedecor diffusion, Bernoulli 19 (2013), no. 5B, 2153-2779. MR 3160555
  • 19. A. M. Kulik, Asymptotic and spectral properties of exponentially $ \phi $-ergodic Markov processes, Stoch. Process. Appl. 121 (2011), 1044-1075. MR 2775106 (2012d:60194)
  • 20. M. Hairer and J. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. Math. 164 (2006), 993-1032. MR 2259251 (2008a:37095)
  • 21. M. Hairer and J. Mattingly, Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations, Ann. Probab. 36 (2008), 2050-2091. MR 2478676 (2010i:35295)
  • 22. T. Komorowski, Sz. Peszat, and T. Szarek, On ergodicity of some Markov processes, Ann. Probab. 38 (2010), 1401-1443. MR 2663632 (2011f:60148)
  • 23. T. Szarek, The uniqueness of invariant measures for Markov operators, Studia Math. 189 (2008), 225-233. MR 2457488 (2009m:60166)
  • 24. M. Hairer, J. C. Mattingly, and M. Scheutzow, Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations, Probab. Theory Related Fields 149 (2011), 223-259. MR 2773030

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60H10, 60J10

Retrieve articles in all journals with MSC (2010): 60H10, 60J10

Additional Information

A. Yu. Veretennikov
Affiliation: School of Mathematics, University of Leeds, United Kingdom; Institute for Information Transmission Problems, Moscow, Russia

A. M. Kulik
Affiliation: Institute of Mathematics, National Academy of Science, Tereschenkivs’ka Street, 3,\lb01601, Kyiv, Ukraine

Keywords: Diffusion approximation, distance in variation, Kantorovich--Rubinstein distance, central limit theorem
Received by editor(s): May 15, 2012
Published electronically: July 24, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society