Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

Request Permissions   Purchase Content 
 
 

 

Convergence of exit times for diffusion processes


Authors: Yu. S. Mishura and V. V. Tomashyk
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 88 (2013).
Journal: Theor. Probability and Math. Statist. 88 (2014), 139-149
MSC (2010): Primary 60G40, 60H15, 60J60
DOI: https://doi.org/10.1090/S0094-9000-2014-00924-2
Published electronically: July 24, 2014
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish the convergence in probability of exit times from a strip for stochastic processes that are solutions of stochastic differential equations with diffusion coefficients satisfying the Yamada condition under the assumption that the coefficients converge. As an auxiliary result, the uniform convergence in probability of pre-limit processes to the limit process is proved.


References [Enhancements On Off] (What's this?)

  • 1. I. I. Gihman and A. V. Skorohod, Controlled Stochastic Processes, ``Naukova dumka'', Kiev, 1977; English transl., Springer-Verlag, Berlin, 1979. MR 544839 (80h:60081)
  • 2. E. B. Dynkin and A. A. Yushkevich, Markov Processes: Theorems and Problems, ``Nauka'', Moscow, 1967; English transl., Plenum Press, New York, 1969. MR 0242252 (39:3585a)
  • 3. D. A. Darling, T. Ligget, and H. M. Taylor, Optimal stopping for partial sums, Ann. Math. Statist. 43 (1972), 1363-1368. MR 0312564 (47:1121)
  • 4. S. Watanabe and N. Ikeda, Stochastic Differential Equations and Diffusion Processes, North Holland Publ. Co., Amsterdam-Oxford-New York, 1981. MR 637061 (84b:60080)
  • 5. T. Yamada, Sur l'approximation des solutions d'equations differentielles stochastiques, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36 (1976), 153-164. MR 0413269 (54:1386)
  • 6. Yu. S. Mishura, S. V. Posashkova, and G. M. Shevchenko, Properties of solutions of stochastic differential equations with nonhomogeneous coefficients and non-Lipschitz diffusion, Teor. Imovir. Mat. Stat. 79 (2008), 105-113; English transl. in Theory Probab. Math. Statist. 79 (2009), 117-126. MR 2494541 (2010d:60136)
  • 7. I. I. Gihman and A. V. Skorohod, Introduction to the Theory of Random Process, ``Nauka'', Moscow, 1965; English transl., W. B. Saunders Company, Philadelphia, 1969. MR 0247660 (40:923)
  • 8. I. I. Gihman and A. V. Skorohod, Stochastic Differential Equations, ``Naukova dumka'', Kiev, 1968; English transl., Springer-Verlag, New York, 1972. MR 0346904 (49:11625)
  • 9. K. Itô and H. P. McKean, Diffusion Processes and Their Sample Paths, Springer, Berlin, 1965. MR 0199891

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G40, 60H15, 60J60

Retrieve articles in all journals with MSC (2010): 60G40, 60H15, 60J60


Additional Information

Yu. S. Mishura
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Volodymyrs’ka Street, 64, Kyiv 01601, Ukraine
Email: myus{@}univ.kiev.ua

V. V. Tomashyk
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Volodymyrs’ka Street, 64, Kyiv 01601, Ukraine
Email: vladdislav@gmail.com

DOI: https://doi.org/10.1090/S0094-9000-2014-00924-2
Keywords: Stopping times, stochastic differential equations, Yamada condition
Received by editor(s): November 1, 2012
Published electronically: July 24, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society