Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Properties of integrals with respect to fractional Poisson processes with compact kernels


Authors: Y. Mishura and V. Zubchenko
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 89 (2013).
Journal: Theor. Probability and Math. Statist. 89 (2014), 143-152
MSC (2010): Primary 60G22; Secondary 60G51
DOI: https://doi.org/10.1090/S0094-9000-2015-00941-8
Published electronically: January 26, 2015
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Properties of a fractional Poisson process with the Molchan-Golosov kernel are studied. The kernel can be viewed as compact since it is non-zero on a compact interval. The integral of a nonrandom function with respect to centered and non-centered fractional Poisson processes with the Molchan-Golosov kernel is introduced. The second moments of these integrals are obtained in terms of the norm of the integrand in the space $ L_{1/H}([0,T])$. Moment estimates for higher moments of these integrals are established by using the Bichteler-Jacod inequality.


References [Enhancements On Off] (What's this?)

  • 1. L. Beghin and E. Orsingher, Fractional Poisson process and related planar random motions, Bernoulli 12 (2006), no. 6, 1099-1126.
  • 2. A. Benassi, S. Cohen, and J. Istas, Identification and properties of real harmonizable fractional Lévy motions, Bernoulli 8 (2002), 97-115. MR 1884160 (2003b:60075)
  • 3. C. Jost, Transformation formulas for fractional Brownian motion, Stoch. Process. Appl. 116 (2006), 1341-1357. MR 2260738 (2007e:60026)
  • 4. F. Mainardi, R. Gorenflo, and E. Scalas, A fractional generalization of the Poisson processes, Vietnam J. Math. 32 (2004), 53-64. MR 2120631
  • 5. F. Mainardi, R. Gorenflo, and A. Vivoli, Renewal processes of Mittag-Leffler and Wright type, Fract. Calc. Appl. Anal. 8 (2005), no. 1, 7-38. MR 2179226
  • 6. C. Marinelli, C. Prévôt, and M. Röckner, Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise, J. Funct. Anal. 258 (2010), no. 2, 616-649. MR 2557949 (2011a:60230)
  • 7. T. Marquardt, Fractional Lévy process with an application to long memory moving average processes, Bernoulli 12 (2006), no. 6, 1099-1126. MR 2274856 (2008j:60119)
  • 8. M. M. Meerschaert, E. Nane, and P. Vellaisamy, The fractional Poisson process and the inverse stable subordinator, Electron. J. Probab. 16 (2011), no. 59, 1600-1620. MR 2835248 (2012k:60252)
  • 9. J. Memin, Yu. Mishura, and E. Valkeila, Inequalities for the moments of Wiener integrals with respect to fractional Brownian motions, Statist. Probab. Lett. 51 (2001), 197-206. MR 1822771 (2002b:60096)
  • 10. Yu. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, Berlin, 2008. MR 2378138 (2008m:60064)
  • 11. G. Molchan and J. Golosov, Gaussian stationary processes with asymptotic power spectrum, Soviet Mathematics Doklady 10 (1969), no. 1, 134-137.
  • 12. V. Pipiras and M. Taqqu, Are classes of deterministic integrands for fractional Brownian motion on an interval complete?, Bernoulli 7 (2001), no. 6, 873-897. MR 1873833 (2002h:60176)
  • 13. B. S. Rajput and J. Rosinski, Spectral representaion of infinitely divisible processes, Probab. Theory Related Fields 82 (1989), 451-487. MR 1001524 (91i:60149)
  • 14. O. N. Repin and A. I. Saichev, Fractional Poisson law, Radiophysics and Quantum Electronics 43 (2000), no. 9, 738-741. MR 1910034
  • 15. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, 1993. MR 1347689 (96d:26012)
  • 16. H. Tikanmaki and Yu. Mishura, Fractional Lévy process as a result of compact interval intergal transformation, Stoch. Anal. Appl. 29 (2011), 1081-1101. MR 2847337 (2012k:60116)
  • 17. V. P. Zubchenko, Properties of solutions of stochastic differential equations with random coefficients, non-Lipschitzian diffusion, and Poisson measures, Theor. Probab. Math. Statist. 82 (2011), 11-26. MR 2790480 (2012c:60161)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G22, 60G51

Retrieve articles in all journals with MSC (2010): 60G22, 60G51


Additional Information

Y. Mishura
Affiliation: Department of Probability Theory, Statistics and Actuarial Mathematics, Faculty for Mechanics and mathematics, Kyiv National Taras Shevchenko University, Volodymyrska St., 64, Kyiv, 01601, Ukraine
Email: myus@univ.kiev.ua

V. Zubchenko
Affiliation: Department of Probability Theory, Statistics and Actuarial Mathematics, Faculty for Mechanics and mathematics, Kyiv National Taras Shevchenko University, Volodymyrska St., 64, Kyiv, 01601, Ukraine
Email: v_zubchenko@ukr.net

DOI: https://doi.org/10.1090/S0094-9000-2015-00941-8
Keywords: Fractional Poisson process, integral representation of the fractional Poisson process, Mandelbrot--van Ness kernel, Molchan--Golosov kernel, integral with respect to the fractional Poisson process, Bichteler--Jacod inequality
Received by editor(s): February 26, 2013
Published electronically: January 26, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society