Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Asymptotic behavior of the martingale type integral functionals for unstable solutions to stochastic differential equations


Authors: G. L. Kulinich, S. V. Kushnirenko and Yu. S. Mishura
Translated by: S. Kvasko
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 90 (2014).
Journal: Theor. Probability and Math. Statist. 90 (2015), 115-126
MSC (2010): Primary 60H10; Secondary 60F17
DOI: https://doi.org/10.1090/tpms/953
Published electronically: August 7, 2015
MathSciNet review: 3242024
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider functionals of the type $ \int _ {0} ^ {t} g (\xi (s)) \, dW (s) $, $ t \ge 0 $. Here $ g $ is a real valued and locally square integrable function, $ \xi $ is a unique strong solution of the Itô stochastic differential equation $ d \xi (t) = a (\xi (t)) \, dt + dW (t) $, $ a $ is a measurable real valued bounded function such that $ \vert xa (x) \vert \le C $. The behavior of these functionals is studied as $ t \to \infty $. The appropriate normalizing factor and the explicit form of the limit random variable are established.


References [Enhancements On Off] (What's this?)

  • 1. A. Yu. Veretennikov, On the strong solutions of stochastic differential equations, Teor. Veroyatnost. Primenen. XXIV (1979), no. 2, 348-360; English transl. in Theory Probab. Appl. 24 (1979), no. 2, 354-366. MR 532447 (81b:60058)
  • 2. G. L. Kulinich and E. P. Kas'kun, On the asymptotic behavior of solutions of a class of one-dimensional Itô stochastic differential equations, Teor. Imovir. Mat. Stat. 56 (1997), 96-104; English transl. in Theory Probab. Math. Statist. 56 (1998), 97-105. MR 1791858 (2002m:60111)
  • 3. T. Shiga and S. Watanabe, Bessel diffusions as a one-parameter family of diffusion processes, Z. Wahrscheinlichkeitstheory und verw. Geb. 27 (1973), no. 1, 37-46. MR 0368192 (51:4433)
  • 4. G. L. Kulinich, S. V. Kushnirenko, and Y. S. Mishura, Asymptotic behavior of the integral functionals for unstable solutions of one-dimensional Itô stochastic differential equations, Theory Probab. Math. Statist. 89 (2013), 93-105. MR 3235178
  • 5. G. L. Kulinich, Limit distributions for integral type functionals of non-stable diffusion processes, Teor. Imovir. Mat. Stat. 11 (1974), 81-85; English transl. in Theory Probab. Math. Statist. 11 (1975), 82-86. MR 0400423 (53:4257)
  • 6. G. L. Kulinich, Limit theorems for one-dimensional stochastic differential equations under nonregular dependence of coefficients on a parameter, Teor. Imovir. Mat. Stat. 15 (1976), 99-114; English transl. in Theory Probab. Math. Statist. 15 (1978), 101-116. MR 0415771 (54:3850)
  • 7. G. L. Kulinich, On necessary and sufficient conditions for convergence of homogeneous additive functionals of diffusion processes, Proceedings of the Second Ukrainian-Hungarian Conference: New Trends in Probability and Mathematical Statistics (M. Aráto and M. Yadrenko, eds.), vol. 2, ``TViMS'', Kyiv, 1995, pp. 381-390.
  • 8. N. I. Portenko, Some limit theorems for additive functionals of processes with independent increments, Teor. Imovir. Mat. Stat. 4 (1971), 130-136; English transl. in Theory Probab. Math. Statist. 4 (1972), 121-126. MR 0287611 (44:4814)
  • 9. J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, ``Fizmatlit'', Moscow, 1994; English transl., Springer-Verlag, Berlin, 1987.
  • 10. G. L. Kulinich, On the limit behavior of the distribution of the solution of a stochastic diffusion equation, Teor. Veroyatnost. Primenen. XII (1967), no. 3, 348-360; English transl. in Theory Probab. Appl. (1967) 12, no. 3, 497-499. MR 0215365 (35:6206)
  • 11. A. V. Skorokhod and N. P. Slobodenyuk, Limit Theorems for Random Walks, ``Naukova Dumka'', Kiev, 1970. (Russian) MR 0282419 (43:8130)
  • 12. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations and their Applications, ``Naukova Dumka'', Kiev, 1982. (Russian) MR 678374 (84j:60003)
  • 13. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, ``Naukova Dumka'', Kiev, 1968; English transl., Springer-Verlag, Berlin, 1972.
  • 14. A. V. Skorokhod, Studies in the Theory of Random Processes, Kiev University Press, Kiev, 1961; English transl., Addison-Wesley, Reading, 1965. MR 0185620 (32:3082b)
  • 15. N. V. Krylov, Controlled Diffusion Processes, ``Nauka'', Moscow, 1977; English transl., Springer, Berlin, 1980.MR 601776 (82a:60062)
  • 16. I. I. Gikhman and A. V. Skorokhod, Introduction to the Theory of Stochastic Processes, ``Nauka'', Moscow, 1965; English transl., W. B. Saunders, Philadelphia, PA, 1969. MR 0247660 (40:923)
  • 17. M. Loève, Probability Theory, 4th ed., Springer-Verlag, New York, 1977. MR 0123342 (23:A670)

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60H10, 60F17

Retrieve articles in all journals with MSC (2010): 60H10, 60F17


Additional Information

G. L. Kulinich
Affiliation: Department of General Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Volodymyrs’ka Street, 64, Kyiv 01601, Ukraine
Email: zag_mat@univ.kiev.ua

S. V. Kushnirenko
Affiliation: Department of General Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Volodymyrs’ka Street, 64, Kyiv 01601, Ukraine
Email: bksv@univ.kiev.ua

Yu. S. Mishura
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Volodymyrs’ka Street, 64, Kyiv 01601, Ukraine
Email: myus@univ.kiev.ua

DOI: https://doi.org/10.1090/tpms/953
Keywords: It\^o stochastic differential equations, unstable solutions, asymptotic behavior of martingale type functionals
Received by editor(s): March 14, 2014
Published electronically: August 7, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society