Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

On a single-server queueing system with refusal


Author: I. K. Matsak
Translated by: S. Kvasko
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 90 (2014).
Journal: Theor. Probability and Math. Statist. 90 (2015), 153-160
MSC (2010): Primary 60K25, 90B22
DOI: https://doi.org/10.1090/tpms/956
Published electronically: August 10, 2015
MathSciNet review: 3242027
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A single-server queueing system is considered with refusal of a general type. Stationary probabilities are found and the central limit theorem is established for the sojourn time.


References [Enhancements On Off] (What's this?)

  • 1. B. V. Gnedenko and I. N. Kovalenko, Introduction to Queueing Theory, ``Nauka'', Moscow, 1966; English transl., Birkhäser Boston, Inc., Boston, MA, 1989. (translated from the second Russian edition by Samuel Kotz) MR 0230395 (37:5957)
  • 2. T. L. Saaty, Elements of Queueing Theory, with Applications, McGraw-Hill, New York, 1961. MR 0133176 (24:A3010)
  • 3. J. Riordan, Stochastic Service Systems, Wiley, New York, 1962. MR 0133879 (24:A3703)
  • 4. A. A. Borovkov, Stochastic Processes in Queueing Theory, ``Nauka'', Moscow, 1972; English transl., Springer-Verlag, New York-Berlin, 1976. MR 0315800 (47:4349)
  • 5. L. Takács, Some probability questions in the theory of telephone traffic, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 8 (1958), 151-210. (Hungarian) MR 0096319 (20:2803)
  • 6. L. Takács, Introduction to the Theory of Queues, Oxford University Press, New York, 1962. MR 0133880 (24:A3704)
  • 7. I. N. Kovalenko, Studies on the Analysis of Reliability of Compound Systems, ``Naukova Dumka'', Kiev, 1975. (Russian)
  • 8. V. S. Korolyuk and A. F. Turbin, Semi-Markov Processes and their Applications, ``Naukova Dumka'', Kiev, 1976. (Russian) MR 0420902 (54:8913)
  • 9. V. V. Anisimov, Asymptotic Methods of Analysis of Stochastic Systems, Metsniereba, Tbilisi, 1984. (Russian)
  • 10. K. Yu. Zhernovyĭ, An investigation of an $ M^{\theta }/G/1/m $ queueing system with service mode switching, Teor. Imovirnost. Matem. Statyst. 86 (2012), 56-68; English transl. in Theor. Probab. Math. Statist. 86 (2013), 65-78.
  • 11. K. Yu. Zhernovyĭ, Busy period and stationary distribution for the queueing system $ M^{\theta }/G/1/\infty $ with a threshold switching between service modes, Teor. Imovirnost. Matem. Statyst. 87 (2012), 46-57; English transl. in Theor. Probab. Math. Statist. 87 (2013), 51-63. MR 3241446
  • 12. D. R. Cox, Renewal Theory, Methuen, London, 1962. MR 0153061 (27:3030)
  • 13. W. L. Smith, Renewal theory and its ramifications, J. Roy. Statist. Soc. Ser. B 20 (1958), 243-302. MR 0099090 (20:5534)
  • 14. B. V. Gnedenko, Yu. K. Belyaev, and A. D. Solov'yev, Mathematical Methods in Reliability Theory, ``Nauka'', Moscow, 1965. (Russian)
  • 15. A. A. Borovkov, Probability Theory, ``Nauka'', Moscow, 1976; English transl. Springer, London, 2013. (translated from the 2009 Russian fifth edition) MR 3086572

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60K25, 90B22

Retrieve articles in all journals with MSC (2010): 60K25, 90B22


Additional Information

I. K. Matsak
Affiliation: Department of Operations Research, Faculty for Cybernetics, National Taras Shevchenko University, Volodymyrs’ka Street, 64, Kyiv 01601, Ukraine
Email: ivanmatsak@univ.kiev.ua

DOI: https://doi.org/10.1090/tpms/956
Keywords: Queueing systems, stationary probabilities, central limit theorem
Received by editor(s): June 7, 2013
Published electronically: August 10, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society