A probabilistic approach to studies of DP-transformations and faithfullness of covering systems to evaluate the Hausdorff-Besicovitch dimension

Authors:
M. H. Ibragim and G. M. Torbin

Translated by:
S. Kvasko

Original publication:
Teoriya Imovirnostei ta Matematichna Statistika, tom **92** (2015).

Journal:
Theor. Probability and Math. Statist. **92** (2016), 23-36

MSC (2010):
Primary 60G30, 11K55, 28A80

Published electronically:
August 10, 2016

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is devoted to the development of a probabilistic approach to transformations preserving the Hausdorff-Besicovitch dimension. New relations between fractal faithfulness of fine covering systems and DP-properties of related probability distribution functions are found. Necessary and sufficient conditions for the probability distribution functions of random variables with independent -symbols to be DP-functions are obtained.

**1.**Sergio Albeverio, Yuri Kondratiev, Roman Nikiforov, and Grygoriy Torbin,*On fractal properties of non-normal numbers with respect to Rényi 𝑓-expansions generated by piecewise linear functions*, Bull. Sci. Math.**138**(2014), no. 3, 440–455 (English, with English and French summaries). MR**3206478**, 10.1016/j.bulsci.2013.10.005**2.**Sergio Albeverio and Grygoriy Torbin,*Fractal properties of singular probability distributions with independent 𝑄*-digits*, Bull. Sci. Math.**129**(2005), no. 4, 356–367 (English, with English and French summaries). MR**2134126**, 10.1016/j.bulsci.2004.12.001**3.**S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, and G. Torbin,*On fine structure of singularly continuous probability measures and random variables with independent 𝑄-symbols*, Methods Funct. Anal. Topology**17**(2011), no. 2, 97–111. MR**2849470****4.**Sergio Albeverio, Mykola Pratsiovytyi, and Grygoriy Torbin,*Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension*, Ergodic Theory Dynam. Systems**24**(2004), no. 1, 1–16. MR**2041258**, 10.1017/S0143385703000397**5.**Sergio Albeverio, Mykola Pratsiovytyi, and Grygoriy Torbin,*Transformations preserving the Hausdorff-Besicovitch dimension*, Cent. Eur. J. Math.**6**(2008), no. 1, 119–128. MR**2379954**, 10.2478/s11533-008-0007-y**6.**Patrick Billingsley,*Hausdorff dimension in probability theory. II*, Illinois J. Math.**5**(1961), 291–298. MR**0120339****7.**C. D. Cutler,*A note on equivalent interval covering systems for Hausdorff dimension on 𝑅*, Internat. J. Math. Math. Sci.**11**(1988), no. 4, 643–649. MR**959443**, 10.1155/S016117128800078X**8.**Kenneth Falconer,*Fractal geometry*, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003. Mathematical foundations and applications. MR**2118797****9.**John R. Kinney and Tom S. Pitcher,*The dimension of some sets defined in terms of 𝑓-expansions*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**4**(1965/1966), 293–315. MR**0198515****10.**S. Kullback and R. A. Leibler,*On information and sufficiency*, Ann. Math. Statistics**22**(1951), 79–86. MR**0039968****11.**R. O. Nīkīforov and G. M. Torbīn,*Fractal properties of random variables with independent 𝑄_{∞}-symbols*, Teor. Ĭmovīr. Mat. Stat.**86**(2011), 150–162 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist.**86**(2013), 169–182. MR**2986457**, 10.1090/S0094-9000-2013-00896-5**12.**N. V. Pratsevytyĭ and G. M. Torbin,*Analytic (symbol) representation of continuous transformations of that preserve the Hausdorff-Besicovitch dimension*, Nauk. Zap. Dragomanov Univ. Fiz. Mat. Nauky**4**(2003), 207-215. (Ukrainian)**13.**A. N. Shiryaev,*Veroyatnost*, 2nd ed., “Nauka”, Moscow, 1989 (Russian). MR**1024077****14.**Grygoriy Torbin,*Probability distributions with independent 𝑄-symbols and transformations preserving the Hausdorff dimension*, Theory Stoch. Process.**13**(2007), no. 1-2, 281–293. MR**2343830****15.**G. M. Torbīn,*Multifractal analysis of singularly continuous probability measures*, Ukraïn. Mat. Zh.**57**(2005), no. 5, 706–721 (Ukrainian, with English and Ukrainian summaries); English transl., Ukrainian Math. J.**57**(2005), no. 5, 837–857. MR**2209816**, 10.1007/s11253-005-0233-4**16.**A. F. Turbin and N. V. Pratsevityĭ,*Fraktalnye mnozhestva, funktsii, raspredeleniya*, “Naukova Dumka”, Kiev, 1992 (Russian, with Russian and Ukrainian summaries). MR**1353239**

Retrieve articles in *Theory of Probability and Mathematical Statistics*
with MSC (2010):
60G30,
11K55,
28A80

Retrieve articles in all journals with MSC (2010): 60G30, 11K55, 28A80

Additional Information

**M. H. Ibragim**

Affiliation:
Department of Mathematical Analysis and Differential Equations, Naional Pedagogic Dragomanov University, Pyrogov Street, 9, Kyiv 01130, Ukraine

Email:
ibragimmuslem1978@gmail.com

**G. M. Torbin**

Affiliation:
Department of Mathematical Analysis and Differential Equations, Naional Pedagogic Dragomanov University, Pyrogov Street, 9, Kyiv 01130, Ukraine — and — Department of Fractal Analysis, Institute of Mathematics, National Academy of Science of Ukraine, Tereshchenkivs’ka Street, 3, Kyiv 01130, Ukraine

Email:
torbin7@gmail.com

DOI:
https://doi.org/10.1090/tpms/980

Keywords:
Singularly continuous probability distributions,
$Q^*$-representations,
DP-transformations,
faithful covering systems,
Hausdorff--Besicovitch dimension of sets,
Hausdorff dimension of probability measures

Received by editor(s):
May 15, 2015

Published electronically:
August 10, 2016

Additional Notes:
The first author was supported by the project “Multilevel analysis of singular probability measures and its applications” (Ministry of Education and Science of Ukraine)

The second author was supported by the projects STREVCOMS and “Multilevel analysis of singular probability measures and its applications” (Ministry of Education and Science of Ukraine) and the Alexander von Humboldt Foundation

Dedicated:
This paper is dedicated to the 90$^{th}$ anniversary of Academician Volodymyr Semenovych Korolyuk

Article copyright:
© Copyright 2016
American Mathematical Society