Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Limit behavior of functionals of solutions of diffusion type equations


Authors: G. L. Kulinich, S. V. Kushnirenko and Yu. S. Mishura
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 92 (2015).
Journal: Theor. Probability and Math. Statist. 92 (2016), 93-107
MSC (2010): Primary 60H10; Secondary 60J60
DOI: https://doi.org/10.1090/tpms/985
Published electronically: August 10, 2016
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The asymptotic behavior as $ T \to \infty $ of the functionals $ I (tT) $ with an appropriate normalizing factor is studied, where $ I (t) = F (\xi (t)) + \int _ {0} ^ {t} g (\xi (s)) \, dW (s) $, $ t \ge 0 $, $ F $ is a continuous function, $ g $ is a locally square integrable function, $ \xi $ is an unstable solution of the Itô stochastic differential equation $ d \xi (t) = a (\xi (t)) \, dt + dW (t) $, and $ a $ is a measurable and bounded function. We find the normalizing factor for the weak convergence of stochastic processes $ I(tT)$, $ t\ge 0$, for certain classes of these equations. The explicit form of the limit processes is established.


References [Enhancements On Off] (What's this?)

  • 1. A. Ju. Veretennikov, Strong solutions of stochastic differential equations, Teor. Veroyatnost. i Primenen. 24 (1979), no. 2, 348–360 (Russian, with English summary). MR 532447
  • 2. I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, ``Naukova Dumka'', Kiev, 1968; English transl., Springer-Verlag, Berlin, 1972.
  • 3. G. L. Kulinich, Asymptotic Analysis of Unstable Solutions of One Dimensional Stochastic Differential Equations: a Textbook, ``Kyiv University'', Kyiv, 2003. (Ukrainian)
  • 4. G. L. Kulinič, On the asymptotic behavior of the distributions of functionals of type ∫₀^{𝑡}𝑔(𝜉(𝑠))𝑑𝑠, of diffusion processes, Teor. Verojatnost. i Mat. Statist. Vyp. 8 (1973), 99–105, 177 (Russian, with English summary). MR 0426179
  • 5. G. L. Kulīnīč, Limit distributions for functionals of integral type of nonstable diffusion processes, Teor. Verojatnost. i Mat. Statist. Vyp. 11 (1974), 81–85, 180 (Russian, with English summary). MR 0400423
  • 6. G. L. Kulīnīč, On the asymptotic behavior of the solution of dimensional stochastic diffusion equation, Stochastic differential systems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978) Lecture Notes in Control and Information Sci., vol. 25, Springer, Berlin-New York, 1980, pp. 334–343. MR 609199
  • 7. G. L. Kulinich, On necessary and sufficient conditions for convergence of homogeneous additive functionals of diffusion processes, Proceedings of the Second Ukrainian-Hungarian Conference: New Trends in Probability and Mathematical Statistics (M. Arató and M. Yadrenko, eds.), vol. 2, ``TViMS'', Kyiv, 1995, pp. 381-390.
  • 8. G. L. Kulinich, S. V. Kushnirenko, and Y. S. Mishura, Asymptotic behavior of the integral functionals for unstable solutions of one-dimensional Itô stochastic differential equations, Teor. Ĭmovīr. Mat. Stat. 89 (2013), 91–103 (English, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 89 (2014), 101–114. MR 3235178, https://doi.org/10.1090/s0094-9000-2015-00938-8
  • 9. G. L. Kulīnīch, S. V. Kushnīrenko, and Yu. S. Mīshura, Asymptotic behavior of integral functionals of martingale type for unstable solutions of stochastic differential equations, Teor. Ĭmovīr. Mat. Stat. 90 (2014), 102–112 (Ukrainian, with English, Russian and Ukrainian summaries); English transl., Theory Probab. Math. Statist. 90 (2015), 115–126. MR 3242024, https://doi.org/10.1090/tpms/953
  • 10. A. V. Skorohod and N. P. Slobodenjuk, \cyr Predel′nye teoremy dlya sluchaĭnykh bluzhdaniĭ, Izdat. “Naukova Dumka”, Kiev, 1970 (Russian). MR 0282419
  • 11. A. M. Kulik, Local times of random processes, Mathematics today ’08 (Ukrainian), Mat. S′godnī, vol. 14, “Fakt”, Kiev, 2008, pp. 31–65 (Russian). MR 2541922
  • 12. A. V. Skorokhod, Studies in the theory of random processes, Translated from the Russian by Scripta Technica, Inc, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0185620
  • 13. N. V. Krylov, Controlled diffusion processes, Applications of Mathematics, vol. 14, Springer-Verlag, New York-Berlin, 1980. Translated from the Russian by A. B. Aries. MR 601776
  • 14. I. I. Gikhman and A. V. Skorokhod, Introduction to the theory of random processes, Translated from the Russian by Scripta Technica, Inc, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969. MR 0247660

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60H10, 60J60

Retrieve articles in all journals with MSC (2010): 60H10, 60J60


Additional Information

G. L. Kulinich
Affiliation: Department of General Mathematics, Faculty for Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrs’ka Street, 64/13, 01601, Kyiv, Ukraine
Email: zag$_$mat@univ.kiev.ua

S. V. Kushnirenko
Affiliation: Department of General Mathematics, Faculty for Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrs’ka Street, 64/13, 01601, Kyiv, Ukraine
Email: bksv@univ.kiev.ua

Yu. S. Mishura
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Volodymyrs’ka Street, 64/13, 01601, Kyiv, Ukraine
Email: myus@univ.kiev.ua

DOI: https://doi.org/10.1090/tpms/985
Keywords: Diffusion type processes, limit behavior of functionals, unstable solutions of stochastic differential equations
Received by editor(s): February 24, 2015
Published electronically: August 10, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society