Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

 
 

 

Maximal coupling and $ V$-stability of discrete nonhomogeneous Markov chains


Authors: V. V. Golomozyĭ and M. V. Kartashov
Translated by: N. Semenov
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 93 (2015).
Journal: Theor. Probability and Math. Statist. 93 (2016), 19-31
MSC (2010): Primary 60J45; Secondary 60A05, 60K05
DOI: https://doi.org/10.1090/tpms/992
Published electronically: February 7, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Two time-nonhomogeneous discrete Markov chains whose one-step transition probabilities are close in the $ V$-variation norm are considered. The problem of stability of the expectation of $ f(X_n)$ with $ \vert f\vert\le V$ is studied for Markov chains. The main assumption imposed on a Markov chain is the $ V$-mixing. The proofs are based on the maximal coupling procedure that maximize the one-step coupling probabilities.


References [Enhancements On Off] (What's this?)

  • 1. W. Doeblin, Expose de la theorie des chaines simples constantes de Markov a un nomber fini d'estats, Mathematique de l'Union Interbalkanique 2 (1938), 77-105.
  • 2. N. V. Kartashov, Strong Stable Markov Chains, VSP/TViMS, Utrecht/Kiev, The Netherlands/Ukraine, 1996. MR 1451375
  • 3. N. V. Kartashov, Exponential asymptotics of matrices of the Markov renewal, Asymptotic Problems for Stochastic Processes, Preprint 77-24, Akad. Nauk Ukrain. SSR, Inst. Matem., Kiev, 1977, pp. 2-43. (Russian)
  • 4. E. Nummelin, A splitting technique for Harris recurrent chains, Z. Wahrscheinlichkeitstheorie and Verw. Geb. 43 (1978), 309-318. MR 0501353
  • 5. E. Nummelin and R. L. Tweedie, Geometric ergodicity and R-positivity for general Markov chains, Ann. Probab. 6 (1978), 404-420. MR 0474504
  • 6. T. Lindvall, On coupling of discrete renewal sequences, Z. Wahrsch. Verw. Gebiete 48 (1979), 57-70. MR 533006
  • 7. I. N. Kovalenko and N. Yu. Kuznetsov, Construction of an embedding renewal process for essentially multidimensional processes of queueing theory, and its application to obtaining limit theorems, Preprint 80-12, Akad. Nauk Ukrain. SSR, Inst. Kibernet., Kiev, 1980. (Russian) MR 612478
  • 8. P. Ney, A refinement of the coupling method in renewal theory, Stoch. Process. Appl. 11 (1981), 11-26. MR 608004
  • 9. E. Numemelin and P. Tuominen, Geometric ergodicity of Harris recurrent Markov chains with applications to renewal theory, Stoch. Proc. Appl. 12 (1982), 187-202. MR 651903
  • 10. E. Nummelin, General Irreducible Markov Chains and Nonnegative Operators, Cambridge University Press, Cambridge, 1984. MR 776608
  • 11. T. Lindvall, Lectures on the Coupling Method, John Wiley and Sons, 1991. MR 1180522
  • 12. S. P. Mayn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer-Verlag, 1993. MR 1287609
  • 13. P. Tuominen and R. Tweedie, Subgeometric rates of convergence of f-ergodic Markov chains, Adv. Appl. Probab. 26 (1994), 775-798. MR 1285459
  • 14. P. Tuominen and R. L. Tweedie, Subgeometric rates of convergence of f-ergodic Markov chains, Adv. Appl. Probab. 26 (1994), 775-798. MR 1285459
  • 15. H. Thorisson, Coupling, Stationarity, and Regeneration, Springer, New York, 2000. MR 1741181
  • 16. S. F. Jarner and G. O. Roberts, Polynomial convergence rates of Markov chains, Ann. Appl. Probab. 12 (2001), 224-247. MR 1890063
  • 17. R. Douc, E. Moulines, and J. S. Rosenthal, Quantitative bounds for geometric convergence rates of Markov chains, Ann. Appl. Probab. 14 (2004), 1643-1664. MR 2099647
  • 18. R. Douc, E. Mouliness, and J. S. Rosenthal, Quantitative bounds on convergence of Time-nonhomogeneous Markov chains, Ann. Appl. Probab. 14 (2004), no. 4, 1643-1665. MR 2099647
  • 19. R. Douc, E. Moulines, and P. Soulier, Practical drift conditions for subgeometric rates of convergence, Ann. Appl. Probab. 14 (2004), no. 4, 1353-1377. MR 2071426
  • 20. R. Douc, E. Moulines, and P. Soulier, Computable convergence rates for subgeometrically ergodic Markov chains, Bernoulli 13 (2007), no. 3, 831-848. MR 2348753
  • 21. R. Douc, G. Fort, and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes, Stoch. Process. Appl. 119 (2009), no. 3, 897-923. MR 2499863
  • 22. V. V. Golomozyĭ, Stability of time in-homogeneous Markov chains, Visn. Kyiv. Univer. Ser. Phys. Math. 4 (2009), 10-15. (Ukrainian)
  • 23. V. V. Golomozyĭ, A subgeometric estimate for the stability of time-homogeneous Markov chains, Teor. Ĭmovir. Mat. Stat. 81 (2010), 31-46; English transl. in Theory Probab. Math. Statist. 81 (2009), 31-45. MR 2667308
  • 24. M. V. Kartashov, Boundedness, limits, and stability of solutions of an nonhomogeneous perturbation of a renewal equation on a half-line, Teor. Ĭmovir. Mat. Stat. 81 (2009), 65-75; English transl. in Theory Probab. Math. Statist. 81 (2010), 71-83. MR 2667311
  • 25. M. V. Kartashov and V. V. Golomozyĭ, The mean coupling time of independent discrete renewal processes, Teor. Ĭmovir. Mat. Stat. 84 (2011), 78-85; English transl. in Theory Probab. Math. Statist. 84 (2012), 79-86. MR 2857418
  • 26. M. V. Kartashov and V. V. Golomozyĭ, Maximal coupling procedure and stability of discrete Markov chains. I, Teor. Ĭmovir. Mat. Stat. 86 (2012), 81-92; English transl. in Theory Probab. Math. Statist. 86 (2013), 93-104. MR 3241447
  • 27. M. V. Kartashov and V. V. Golomozyĭ, Maximal coupling procedure and stability of discrete Markov chains. II, Teor. Ĭmovir. Mat. Stat. 87 (2012), 58-70; English transl. in Theory Probab. Math. Statist. 87 (2013), 65-78. MR 3241447
  • 28. V. V. Golomozyĭ and M. V. Kartashov, On coupling moment integrability for time-nonhomogeneous Markov chains, Teor. Ĭmovir. Mat. Stat. 89 (2014), 1-11; English transl. in Theory Probab. Math. Statist. 89 (2014), 1-12. MR 3235170
  • 29. V. V. Golomozyĭ, Inequalities for the coupling time of two nonhomogeneous Markov chains, Teor. Ĭmovir. Mat. Stat. 90 (2014), 39-51; English transl. in Theory Probab. Math. Statist. 90 (2015), 43-56. MR 3241859
  • 30. M. V. Kartashov and V. V. Golomozyĭ, Maximal coupling and stability of discrete nonhomogeneous Markov chains, Teor. Ĭmovir. Mat. Stat. 91 (2014), 16-26; English transl. in Theory Probab. Math. Statist. 91 (2015), 17-27. MR 3364120
  • 31. V. V. Golomozyĭ, M. V. Kartashov, and Yu. M. Kartashov, The impact of stress factor on the price of widow's pension. Proofs, Teor. Ĭmovir. Mat. Stat. 92 (2015), 23-27; English transl. in Theory Probab. Math. Statist. 92 (2016), 17-22.
  • 32. Y. Kartashov, V. Golomoziy, and N. Kartashov, The impact of stress factor on the price of widow's pension, Modern Problems in Insurance Mathematics (D. Silverstrov and A. Martin-Löf, eds.), E. A. A. Series, Springer, 2014, pp. 223-237. MR 3330687

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60J45, 60A05, 60K05

Retrieve articles in all journals with MSC (2010): 60J45, 60A05, 60K05


Additional Information

V. V. Golomozyĭ
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue, 6, Kyiv 03127, Ukraine
Email: mailtower@gmail.com

M. V. Kartashov
Affiliation: Department of Probability Theory, Statistics, and Actuarial Mathematics, Faculty for Mechanics and Mathematics, National Taras Shevchenko University, Academician Glushkov Avenue, 6, Kyiv 03127, Ukraine
Email: mailtower@gmail.com

DOI: https://doi.org/10.1090/tpms/992
Keywords: Coupling theory, coupling method, maximal coupling, discrete Markov chains, stability of distributions, test functions
Received by editor(s): March 20, 2015
Published electronically: February 7, 2017
Additional Notes: The paper was prepared following the talk at the International Conference “Probability, Reliability and Stochastic Optimization (PRESTO-2015)” held in Kyiv, Ukraine, April 7–10, 2015
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society