Remote Access Theory of Probability and Mathematical Statistics

Theory of Probability and Mathematical Statistics

ISSN 1547-7363(online) ISSN 0094-9000(print)

Request Permissions   Purchase Content 
 
 

 

Asymptotic properties of Ibragimov's estimator for a parameter of the spectral density of the random noise in a nonlinear regression model


Authors: A. V. Ivanov and V. V. Prikhod’ko
Translated by: S. Kvasko
Original publication: Teoriya Imovirnostei ta Matematichna Statistika, tom 93 (2015).
Journal: Theor. Probability and Math. Statist. 93 (2016), 51-70
MSC (2010): Primary 60G50, 65B10, 60G15; Secondary 40A05
DOI: https://doi.org/10.1090/tpms/1003
Published electronically: February 7, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A nonlinear regression model with continuous time is considered. The consistency and asymptotic normality of the Ibragimov estimator for a parameter of the spectral density of the Gaussian stationary noise are obtained.


References [Enhancements On Off] (What's this?)

  • 1. A. V. Ivanov, Asymptotic Theory of Nonlinear Regression, Kluwer Academic Publishers Group, Dordrecht-Boston-London, 1997. MR 1472234
  • 2. O. V. Ivanov and K. K. Moskvichova, Stochastic asymptotic expansion of correlogram estimator of the correlation function of random noise in nonlinear regression model, Teor. Ĭmovir. Mat. Stat. 90 (2014), 77-90; English transl. in Theory Probab. Math. Statist. 90 (2015), 87-101. MR 3241862
  • 3. O. V. Ivanov and K. K. Moskvichova, Asymptotic expansion of the moments of correlogram estimator for the random-noise covariance function in the nonlinear regression model, Ukrain. Mat. Zh. 66 (2014), no. 6, 787-805; English transl. in Ukrainian Math. J. 66 (2014), no. 6, 884-904. MR 3284595
  • 4. H. L. Koul and D. Surgailis, Asymptotic normality of the Wittle estimator in linear regression models with long memory errors, Stat. Inference Stoch. Process. (2000), no. 3, 129-147. MR 1819291
  • 5. O. V. Ivanov and V. V. Prykhod'ko, On the Whittle estimator of the parameter of spectral density of random noise in the nonlinear regression model, Ukrain. Mat. Zh. 67 (2015), no. 8, 1050-1067; English transl. in Ukrainian Math. J. 67 (2016), no. 8, 1183-1203. MR 3473712
  • 6. A. V. Ivanov and N. N. Leonenko, Semiparametric analysis of long-range dependence in nonlinear regression, J. Statist. Plann. Inference (2008), no. 138, 1733-1753. MR 2400476
  • 7. V. V. Anh, N. N. Leonenko, and L. M. Sakhno, On a class of minimum contract estimators for fractional stochastic processes and fields, J. Statist. Plann. Inference (2004), no. 123, 161-185. MR 2058127
  • 8. N. N. Leonenko and L. M. Sakhno, On the Whittle estimators for some classes of continuous-parameter random processes and fields, Statistic Probab. Lett. (2006), no. 76, 781-795. MR 2266092
  • 9. I. A. Ibragimov, On maximum likelihood estimation of parameters of the spectral density of stationary time series, Teor. Veroyatnost. Primenen. 12 (1967), no. 1, 128-134; English transl. in Theory Probab. Appl. 12 (1967), no. 1, 115-119. MR 0228095
  • 10. N. N. Leonenko and E. M. Moldavs'ka, Minimum contrast estimators of a parameter of the spectral density of continuous time random fields, Teor. Ĭmovir. Mat. Stat. (1998), no. 58, 92-103; English transl. in Theor. Probab. Math. Statist. (1999), no. 58, 101-112. MR 1793645
  • 11. C. R. Rao, Linear Statistical Inference and its Applications, John Wiley & Sons, New York-London-Sydney, 1965. MR 0221616
  • 12. N. N. Leonenko and A. V. Ivanov, Statistical Analysis of Random Fields, ``Vyshcha Shkola'', Kiev, 1986; English transl., Kluwer Academic Publishers Group, Dordrecht, 1989. MR 917486
  • 13. A. V. Ivanov, N. N. Leonenko, M. D. Ruiz-Medina, and I. N. Savich, Limit theorems for weighted nonlinear transformation of Gaussian stationary processes with singular spectra, Ann. Probab. 41 (2013), no. 2, 1088-1114. MR 3077537
  • 14. A. V. Ivanov, N. N. Leonenko, M. D. Ruiz-Medina and B. M. Zhurakovsky, Estimation of harmonic component in regression with cyclically dependent errors, Statistics 41 (2015), no. 1, 156-186. MR 3304373
  • 15. N. I. Achiezer, Theory of Approximation, ``Nauka'', Moscow, 1965; English transl., Dover Publications, Inc., New York, 1992.
  • 16. I. A. Ibragimov, On estimation of the spectral function of a stationary Gaussian process, Teor. Veroyatnost. Primenen. 8 (1963), no. 4, 391-430; English transl. in Theory Probab. Appl. 8 (1963), no. 4, 366-401. MR 0160274
  • 17. R. Bentkus, The error in estimating the spectral function of a stationary process, Litovsk. Mat. Sb. 1 (1972), no. XII, 55-71. (Russian) MR 0319332
  • 18. R. M. Espejo, N. N.Leonenko, A. Olenko, and M. D. Ruiz-Medina, On a class of minimum contrast estimators for Gegenbauer random fields, Test 24 (2015), no. 4, 657-680. MR 3414511
  • 19. V. V. Anh, J. M. Angulo, and M. D. Ruiz-Medina, Possible long-range dependence in fractional random field, J. Statist. Plan. Inference 80 (1999), no. 1/2, 95-110. MR 1713795
  • 20. V. V. Anh, N. N. Leonenko, and R. McVinish, Models for fractional Riesz-Bessel motion and related processes, Fractals 3 (2001), no. 9, 329-346.
  • 21. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 4th edition, ``Nauka'', Moscow, 1963; English transl., Academic Press, New York-London, 1965. MR 0197789

Similar Articles

Retrieve articles in Theory of Probability and Mathematical Statistics with MSC (2010): 60G50, 65B10, 60G15, 40A05

Retrieve articles in all journals with MSC (2010): 60G50, 65B10, 60G15, 40A05


Additional Information

A. V. Ivanov
Affiliation: Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine “KPI”, Peremogy Avenue, 37, Kyiv 03056, Ukraine
Email: alexntuu@gmail.com

V. V. Prikhod’ko
Affiliation: Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine “KPI”, Peremogy Avenue, 37, Kyiv 03056, Ukraine
Email: vikaprihodko@ukr.net

DOI: https://doi.org/10.1090/tpms/1003
Keywords: Nonlinear regression model with continuous time, Gaussian stationary noise, residual periodogram, Ibragimov's estimator of a spectral density, consistency, asymptotic normality
Received by editor(s): August 25, 2015
Published electronically: February 7, 2017
Additional Notes: This paper was prepared following the talk at the International conference “Probability, Reliability and Stochastic Optimization (PRESTO-2015)” held in Kyiv, Ukraine, April 7–10, 2015
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society